INTRODUCTION

- Fluorotelomer alcohols (FTOHs) have recently been identified as a potentially significant source of global perfluorinated acid (PFCAs) contamination.
- FTOHs degrade through biotic and abiotic processes in the environment to the saturated (s-) and unsaturated (u-) fluorotelomer carboxylic acids (FTCAs).
- Lower relative volatility and higher water solubility compared with the FTOHs indicates that surface waters are a likely final repository for the FTCAs.
- Scientific and regulatory concern over PFCAs has resulted in a great deal of research on the environmental concentrations, fate, and toxicity of the PFCAs, but no such information exists for the FTCAs.
- We address this knowledge gap by determining acute and chronic laboratory toxicity thresholds for the 4:2, 6:2, 8:2, and 10:2 s- and u-FTCAs with the pelagic microcrustacean, Daphnia magna, the benthic macroinvertebrate, Chironomus tentans, and the floating aquatic macrophyte Lemna gibba.

METHODS & MATERIALS

- Standard laboratory assays conducted in a triple-tier design whereby lower tiers served as screening tools to determine the compounds, concentrations, and species to be tested in the next tier.

Acute Assays

- Daphnia magna
 - < 24-hour-old neonates exposed for 48 hours
 - 250 mL polypropylene test vessels containing 200 mL FTCA solutions
 - 10 animals/replicate, 5 replicates/treatment, 9 treatments/assay
 - Endpoints measured: Immobility and survival

Chironomus tentans

- 10-day-old larvae exposed for 10 days
- 250 mL polypropylene test vessels containing 50 mL sand with overlying FTCA solutions (total volume = 240 mL)
- Static renewal of test solutions every 48 hours
- 10 animals/replicate, 5 replicates/treatment
- 9 treatments/assay
- Endpoints: Growth and survival

Lemna gibba

- 7-day exposures
- 10 mL FTCA solutions in 60 x 15 mm polypropylene petri dishes
- 8 fronds/replicate, 3 replicates/treatment, 9 treatments/assay
- Static renewal of test solutions every 48 hours
- Endpoints: Growth as frond number and dry weight

RESULTS

Chronic Assays

Daphnia magna
- Same conditions as for acute assays, but with 21-day exposures
- 4 animals/replicate, 5 replicates/treatment, 6 treatments/assay, not including controls
- Endpoints: Survival, time to first brood, number of young/female reproduction day

Chironomus tentans
- Same conditions as for acute assays, but exposed for 60 days
- 10 animals/replicate, 12 replicates/treatment, 7 treatments/assay, not including controls
- Endpoints measured: Growth and survival at 20 days, emergence, reproduction

Statistical Analyses

- LC(x, y = 10, 25, 50) values calculated using probit analysis (SAS, 8.2)
- EC(x, y = 10, 25, 50) values calculated using nonlinear regression techniques
- Linear interpolation method used where data were not amenable to nonlinear regression

DISCUSSION & CONCLUSIONS

- FTCAs toxicity is species-dependent and is influenced by fluorocarbon chain length and saturation of the α-β carbon bond.
- All species were more sensitive to FTCAs with chain lengths ≥ 8 fluorocarbons (FCs).
- Lemna gibba was the most sensitive species to FTCAs with FC chain lengths ≥ 8, while Daphnia magna was the most sensitive species to FTCAs with FC chain lengths > 8.
- Saturated FTCAs are more toxic than their unsaturated counterparts.
- FTCAs generally more toxic (1-4 orders of magnitude) to aquatic organisms than corresponding PFCAs that are the focus of current scientific and regulatory concern.
- Critical need for environmental concentration data must be addressed before potential risks of FTCAs to aquatic ecosystems can be adequately evaluated.

ACKNOWLEDGEMENTS

We are grateful to Rebecca Mitchell and Sandra Cook for technical assistance and the Natural Sciences and Engineering Council of Canada for financial support.

REFERENCES

Benoit, T.M. 2002. Toxicological evaluation of perfluorinated organic acids to selected freshwater primary and secondary trophic levels under laboratory and semi-field conditions, Master’s Thesis, Department of Environmental Biology, University of Ghent.

AQUATIC TOXICITY OF FLUOROTELOMER ACIDS

Michelle M. MacDonald 1, P.K. Sibley 1, M.J.A. Dinglasan 2, S.A. Mabury 2, and K.R. Solomon 1
1 Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada
2 Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

Table 1. Acute toxicity (EC50) of eight saturated (s-) and unsaturated fluorotelomer carboxylic acids (FTCAs) to Daphnia magna, Chironomus tentans, and Lemna gibba for ash-free dry weight, and dry weight, respectively. Most sensitive thresholds are highlighted in blue.

<table>
<thead>
<tr>
<th>FTCA</th>
<th>Daphnia magna</th>
<th>Chironomus tentans</th>
<th>Lemna gibba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LC50 (mg/L)</td>
<td>EC50 (mg/L)</td>
<td>LC50 (mg/L)</td>
</tr>
<tr>
<td>4:2 u-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>4:2 s-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>6:2 u-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>6:2 s-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>8:2 u-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>8:2 s-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>10:2 u-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>10:2 s-FTCA</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
</tbody>
</table>

Table 2. Chronic toxicity (EC50) of the 10:2 saturated (s-) and unsaturated (u-) fluorotelomer carboxylic acids (FTCAs) to Daphnia magna, and the 8:2 s-FTCA to Chironomus tentans. Results analyses are (correctly) underway.

<table>
<thead>
<tr>
<th>FTCA</th>
<th>Mortality</th>
<th>Time to 1st brood</th>
<th>Young/female reproductive day</th>
<th>Growth</th>
<th>Total Emergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:2 u-FTCA</td>
<td>2.61 (0.44, 1.66)</td>
<td>1.25 (0.38, 0.52)</td>
<td>Not conducted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:2 u-FTCA</td>
<td>> 2.61</td>
<td>> 1.25</td>
<td>Not conducted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Relative toxicity (EC50) of saturated (s-) and unsaturated fluorotelomer carboxylic acids (FTCAs) to Chironomus tentans, Daphnia magna, and Lemna gibba for ash-free dry weight, immobility, and dry weight, respectively. Error bars denote 95% confidence intervals. Arrows indicate toxicity thresholds > highest concentration tested.

Figure 2. Sublethal chronic responses (growth, emergence) of Chironomus tentans to the 8:2 saturated fluorotelomer acid and Daphnia magna (time to first brood), young/female reproductive day to the 10:2 saturated (s-) and unsaturated (u-) fluorotelomer acids (FTCAs). D. magna concentrations are nominal values (residue analyses underway). Error bars = 95% confidence limits. Reproductive results for C. tentans were inconclusive.