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We develop an iterative, numerically exact approach for the treatment of nonequilibrium quantum transport
and dissipation problems that avoids the real-time sign problem associated with standard Monte Carlo tech-
niques. The method requires a well-defined decorrelation time of the nonlocal influence functional for proper
convergence to the exact limit. Since finite decorrelation times may arise either from temperature or from a
voltage drop at zero temperature, the approach is well suited for the description of the real-time dynamics of
single-molecule devices and quantum dots driven to a steady state via interaction with two or more electron
leads. We numerically investigate two nontrivial models: the evolution of the nonequilibrium population of a
two-level system coupled to two electronic reservoirs, and quantum transport in the nonequilibrium Anderson
model. For the latter case, two distinct formulations are described. Results are compared to those obtained by

other techniques.
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I. INTRODUCTION

There are several ways in which a quantal entity may
exhibit nontrivial departures from equilibrium. First, a sys-
tem may evolve toward equilibrium after application of a
transient external pulse or from a nonequilibrium initial con-
dition. Simple examples of such situations are now relatively
well understood."? Related to these types of departures from
equilibrium, but less well understood, are more challenging
cases of “quantum quenches,” whereby the sudden change in
a control parameter induces dynamics that probe nontrivial
aspects of strong correlation or quantum criticality.> Also un-
derdeveloped is our understanding of quantum mechanical
systems driven to nonequilibrium steady states via coupling
to two or more electronic reservoirs. Since this is the case of
direct relevance for the study of transport through quantum
dots and molecular electronic devices,*’ the complete de-
scription of this type of nonequilibrium behavior is of prac-
tical as well as fundamental interest.

There are essentially two main theoretical frameworks for
the calculation of properties related to the approach to, and
attainment of, nonequilibrium steady states of the types men-
tioned above. The first is the standard real-time Schwinger-
Keldysh technique.® This approach has led to the exact for-
mulation of steady-state properties (e.g., the current) in terms
of Keldysh Green’s functions.” A variety of direct perturba-
tive and renormalization-group calculations have naturally
emerged from this starting point.®-!% In addition, real-time
Monte Carlo (MC) methods have been formulated on the
basis of the Schwinger-Keldysh approach.!'-!> The Monte
Carlo methods are exact in principle but may be severely
limited by numerical sign problems, depending on the for-
mulation, system, and regime under investigation.

The second framework involves the use of Lippmann-
Schwinger scattering states'* to construct the properties of
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nonequilibrium quantum steady state. This approach has led
to several rigorous results for integrable models.'> In the last
few years this viewpoint, combined with the notion of Her-
shfield’s steady-state density operator,'® has inspired the for-
mulation of new nonperturbative approaches as well as nu-
merical methods.!”2 Most recently, promising numerical
renormalization-group approaches have been put forward
based directly on the construction of scattering states,”! and
an extension to the density-matrix renormalization-group
method, incorporating real-time evolution, has been
presented.???3

Consideration of more standard classes of nonequilibrium
relaxation in dissipative systems such as the spin-boson
model has led to a variety of path-integral techniques for the
numerically exact propagation of the reduced density matrix
of a small system coupled to its environment.! These meth-
ods, which include real-time Monte Carlo techniques” as
well as deterministic iterative approaches,?*~%% are connected
to the Schwinger-Keldysh-type framework discussed above.
Here, as in the Schwinger-Keldysh technique, the approach
to equilibrium along a particular time contour from a pre-
scribed nonequilibrium initial condition is described. Of
these approaches, iterative path-integral methods have had
particular success.’* Such methods are based on the notion
that a well-defined bath correlation time (if one exists) ren-
ders the range of the influence functional (IF) finite, allowing
for a controlled truncation of memory effects and thus a de-
terministic propagation of observables that is free of the real-
time sign problem.

While iterative path-integral approaches have been proven
successful in describing nonequilibrium dynamics in simple
spin-boson type models in the last 15 years, only recently
they have been formulated and used in cases of relevance to
transport through quantum dots and molecular electronic
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devices.”” In such systems, given that a chemical potential
difference between electronic reservoirs leads to a well de-
fined decorrelation time for dynamics even at zero tempera-
ture, a memory time, beyond which correlations can be
dropped, exists. This finite-memory characteristic allows the
development of iterative techniques, capable of describing
relaxation in a wide and nontrivial region of parameter
space.

In this work we develop and apply a new iterative path-
integral technique to two models of nonequilibrium transport
and dissipation: the spin-fermion (SF) model and the single-
impurity Anderson model (SIAM). The techniques devel-
oped here hold the potential for the exact description of long-
time dynamics in systems driven to a nonequilibrium steady
state via coupling to two or more electronic reservoirs. The
method we describe in this work is conceptually similar to
the iterative summation of real-time path integrals (ISPI) ap-
proach of Thorwart and co-workers.?” The distinction be-
tween these two approaches lies mainly in the propagation
scheme and the manner in which the leads are traced out of
the problem. In the iterative approach developed here, the
reservoirs are represented as discrete levels and are elimi-
nated numerically via the Blankenbecler-Scalapino-Sugar
(BSS) identity.?® While this approach has the disadvantage
that an additional source of systematic error is introduced
due to the discretization of the lead degrees of freedom, we
find empirically that the error is easily controlled without
undue computational expense. The advantage of this ap-
proach is that the study of general models (for example, mul-
tisite Hubbard “dots”) may be performed with essentially no
reformulation of methodology. Taking advantage of this fact,
we present a first set of exact results for the out-of-
equilibrium two-lead spin-fermion model. A second differ-
ence between the ISPI approach and the approach outlined in
this work is related to the propagation scheme. Here we com-
bine our matrix formulation with a propagation scheme simi-
lar to that described in Ref. 26. This allows for very efficient
propagation that may be trivially parallelized with commer-
cially available software.>” These distinctions in scaling and
flexibility of approach render our formulation as a useful
compliment to the previously developed ISPI method.

This paper is organized as follows. Section II and Appen-
dix A present some general aspects of the iterative propaga-
tion technique. Section III contains a case study of the relax-
ation of a tunneling system coupled to two electronic
reservoirs. In Sec. IV we investigate nonequilibrium trans-
port through an Anderson dot. In Sec. V we conclude. Ap-
pendix B describes extensions to nonzero temperatures. We
include an alternative formulation of our approach for the
nonequilibrium Anderson dot in Appendix C. This formula-
tion may also hold promise in related path-integral ap-
proaches such as the ISPI approach. Finally, Appendix D
discusses some aspects of the convergence analysis which is
necessary for elimination of the systematic errors in the
method.

II. GENERAL FORMULATION OF THE
ITERATIVE APPROACH

We consider a generic many-body system, consisting of a
finite interacting region coupled to two infinite noninteract-
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ing reservoirs. The Hamiltonian H can be partitioned into a
zeroth-order term H,, whose solution can be exactly obtained,
typically containing few-body interactions, and a higher or-
der interaction term H;. We introduce our iterative approach
using the reduced density matrix, pg=Trg{p}, obtained by
tracing the total density matrix p over the reservoir degrees
of freedom. The time evolution of pg(¢) is exactly given by

ps(s”,s" 1) = Trp(s"|e'p(0)e™[s"). (1)

We decompose the evolution operator into a product of N
exponentials, e'=(e¥)N; St=t/N, and define the discrete
time evolution operator G= ¢, Different Trotter decompo-
sitions can be employed for splitting this operator. For ex-
ample, we find it convenient to approximate §
~ it 124iHodo1H 1312 when studying the spin-fermion model
(Sec. III) while for the Anderson model (Sec. IV) we find
that it is useful to employ a decomposition of the form G
~ ¢H0d112iH131,1Hod2 The overall time evolution can be rep-
resented in a path-integral formulation,

ps(s”,s',t)=fds3f ds;'-“fdsx,_l

x f is: f ds - J sy, Trgl(s"1GI55,)

X(snolGIsy-2) -+ (solp(0)sg) - -+ (sy_lGlsy-1)
X(sy-1Gls")} 2)

where s, are subsystem (or fictitious) degrees of freedom,
representing the discrete path on the forward (+) and back-
ward (—) contours. As an initial condition we may assume
that p(0)=pgps(0) with the bath (B) uncoupled to the sub-
system. In what follows we refer to the integrand in Eq. (2)
as an “Influence Functional,”®® and denote it by
I(s(;: ,slt, ,sf,), assigning sy=s", sy=s'. Note that our defi-
nition of the IF is more general than that contained in the
original work of Feynman and Vernon.’* We chose this loose
definition to make connection with the iterative schemes de-
veloped in the previous path-integral-based numerical
work.?*

The IF combines the information of subsystem and bath
degrees of freedom with system-bath interactions, and its
form is analytically known only in special cases. For ex-
ample, for a harmonic bath bilinearly coupled to a subsystem
the IF is an exponential of a quadratic form, multiplied by
free-subsystem propagation terms>°

Ihar(s(;: .. SZ‘V_")

N k
=exp| — 2 2 (st =) (mewsp = My 4050)
k=0 x'=0
X (syle™™0%|sy_ 1) -+ (splps(0)lsg) - - (s [e™0%]sy).

(3)

The coefficients 7, depend on the bath spectral function
and the temperature.’* For a general anharmonic environ-
ment the IF may contain multiple-site interactions, where the
coefficients are not known in general.25 However, even when
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the form of the IF is analytically known as in Eq. (3), it still
combines long-range interactions limiting brute force direct
numerical simulations to very short times.

For a system coupled to a single thermal reservoir this
challenge has been tackled at finite temperatures where a
natural bath decoherence time exists. As noted by Makri and
Makarov,?* such cases are characterized by the useful feature
that nonlocal correlations contained in the IF decay exponen-
tially, enabling a (controlled) truncation of the IF that in-
cludes only a finite memory length. Based on this feature, an
iterative scheme for evaluating the (finite-dimensional) path
integral has been developed.?* While the original quasiadia-
batic path-integral (QUAPI) algorithm was developed based
on the analytical pairwise form of the IF specific to harmonic
reservoirs [Eq. (3)], a subsequent more general approach pro-
posed in Ref. 26 is based only on the fact that memory ef-
fects at finite temperatures generically vanish exponentially
in the long-time limit.

This idea can be further employed to simulate the dynam-
ics of a generic nonequilibrium bias-driven system.?’ Since
in standard nonequilibrium situations bath correlations die
exponentially, the IF can be truncated beyond a memory time
7.=N,ot, corresponding to the time where beyond which
bath correlations may be controllably ignored. Here, N, is an
integer, ot is the discretized time step, and 7. is a correlation
time dictated by the nonequilibrium situation. For a system
under a dc potential bias Au at zero temperature, 7,
~1/Apu, while at temperatures for which 7> Ay tempera-
ture sets the scale of the memory range. We therefore write
the total influence functional approximately as

I(s(;:,sf,s;:, ,s;\‘;)
=~ I(s§,sf, ,sﬁs)ls(sli,szt, ,siﬂ) e
+ + +
XIX(SN_NS,SN_NXH, ceesSy) (4)
with
£ o+ *
.. . 105 o Spps - - ,sk+NS)
L5t S - ’Sk+N?) = 1(s 5= = . (5)
’ (St sStats -+ ’Sk+NS—1)

The errors in Eq. (4) are the usual Trotter error arising from
the time discretization and the truncation to a finite memory
time 7.=N,ot. Both of these errors can be controlled. Equa-
tion (4) can be understood as a simple generalization of the
pairwise expression (3) for which

h * * * =+ + * + *
I (s Sieas - 75k+1v_) = folsi ) fi(sissian) - 'fNX(sk ’Sk+1vs)-

(6)

The one-body and two-body functions f can be obtained by
rearranging Eq. (3). From these expressions we recursively
build the finite-range IF for a general model. We assume that
the complete functional decays to zero with time constant
7,=N,6t, (N;<N), thus it can be approximated by the prod-
uct
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I(s(f,sli,szi, ,s,%,)

I(sf,s;:,sgi, ,s;\‘;)

()

~ + + o+ +
~I(sg.57+87s - Sye) T = =+ N
I(57,85 483 5 v »Sy_y)

By recursively applying this rule, the truncated IF is further
decomposed until it correlates interactions within 7, only,

I(5g 87 2855 e ssy) = 1(55 575 - ,si)
1(s7,85 5 ... ,siﬂ)l(szi,sf, ,siﬂ)
I(s7,85, ... ,si) 1(s5 .55, ... ,s,f,sﬂ)
+ + +
sy oSNt -+ 55N)
N D ®)
I(SN—NS’SN—NSH’ ceosShop)

resulting in Eqs. (4) and (5). The physical content of this
approach, which is similar to that described in Ref. 26, is
outlined in Appendix A. The approach becomes exact as 7,
Outside of the initial propagation  step,
I(55 57 5 - ,sﬁY)EI(sa—’,sli, ,sf,r), we can identify the
functions I, [Eq. (4)] as the ratio between two IFs where the
numerator is calculated with an additional time step, Eq. (5).
Next, based on the decomposition [Eq. (4)] we can itera-
tively integrate Eq. (2) by defining a multiple-time reduced

— 00,

density matrix pg(sg,Ser1s--->Sken —1)- Its initial value is

given by ﬁs(s(f, ,s;—r, _y)=1, and it is evolution is dictated
s

by

~ + o+ + + +
Ps(sys ... ,SNS) = f dsgy Ps(sy s - ,SNS_I)IS(S(;—, ,SNS)

)
with
I(sgs - sy ) = Trg{(sy |Glsy 1) -+ (511G 55X ]0(0)|sp)
X(solGls7) -+~ (sy 1Glsy )} (10)

A general propagation step involves integration over two
(%) coordinates,

~ = s T~ = = s s
Ps(Sti1s - ’Sk+NS) = f dsi ps(sics - ’Sk+NS—l)Is(sk’ ’Sk+Ns)’

(11)

where the time-local (#,=kdr) reduced density matrix is ob-
tained by summing over all intermediate states,

pS(tk)=fdsl;:—1'”dski—NSHﬁS(SI?—NSH’ Losp). (12)

The evolution at shorter times k<N, can be calculated in a
numerically exact way. Before turning to specific models we
would like to make the following comments regarding the
above derivation. (i) The specific partitioning of the Hamil-
tonian into Hy and H; depends on the model investigated. As
we show below, H, may include only the subsystem degrees
of freedom (spin-fermion model) or it may be constructed
involving all two-body terms (Anderson model). (ii) Obvi-
ously, the decomposition [Eq. (7)] is not unique, however,
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different schemes should lead to equivalent time evolution,
and thus the partitioning is a matter of numerical conve-
nience. (iii) The truncated IF (I,) is not necessarily a time
invariant. As we show below, in the spin-fermion model /;
does not depend on time, thus in this case it needs to be
evaluated only once during the propagation scheme. In con-
trast for the Anderson model standard use of the Hubbard-
Stratonovich (HS) transformation leads to an IF expression
that has to be updated at each time step. In Appendix C we
outline an approach that does not make use of the Hubbard-
Stratonovich transformation and thus produces a form on the
IF of the Anderson model that is time independent. (iv) The
short-range function /; can be analytically evaluated in some
special cases.”*?> For general reservoirs it may be evaluated
numerically, by using finite-size reservoirs as described in
the next section. (v) The approach outlined here is not re-
stricted to specific statistics of the leads (boson or fermion)
and is solely based on the fact that at finite temperature
and/or finite bias bath correlations exponentially decay at
long time. Therefore, it can be used to treat finite temperature
anharmonic bosonic environments?® as well as nonequilib-
rium Fermi systems.

II1. DISSIPATION IN THE NONEQUILIBRIUM
SPIN-FERMION MODEL

A. Model

As a first example, we consider the dynamics of a two-
state system coupled to two fermionic leads maintained at
different chemical potential values, the “Spin Fermion
model.” This model has been considered in a series of recent
papers,31=3% and serves as a simple, albeit nontrivial, example
exhibiting the generic behavior associated with the approach
to a nonequilibrium steady state. In particular, at zero tem-
perature the chemical-potential difference Au sets the essen-
tial energy scale for dephasing as is expected generically in
more complex models such as the nonequilibrium Kondo
model.® It should be noted, however, the connection be-
tween the model studied here and the nonequilibrium Kondo
model® is more tenuous then that between the tunneling cen-
ter model in equilibrium' and the standard (equilibrium)
Kondo model.*® We take as our Hamiltonian

H=H,+H,,

Hy=H;, H,=Hp+Hgp. (13)
The bath Hamiltonian Hj is taken to be that of two indepen-
dent leads (@=L, R) characterized by (spinless) free-fermion
statistics with different chemical potentials, namely,

Hp= > ekc;kca,k. (14)
a,k

The operator c;k (cqyu) creates (annihilates) an electron with
momentum k£ in the ath lead. The system Hamiltonian Hy
consists of a two-level system with a bare tunneling ampli-
tude A and a level splitting B,
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Hy=—0.+— (15)
= - O,.
ST

We take the general form for the system-bath coupling to be

Hgp= 2

a,a’ kk'

Voz,k;a’,k'c:; o' k' O;- (16)

Different versions of the model may be expressed via differ-
ent forms of the coupling parameters V. In this paper we
focus on the model presented in Refs. 32 and 37, where the
momentum dependence of the scattering potential is ne-
glected. The system-bath scattering potentials are then given
by V4> Where a,a'=L,R are the Fermi sea indices.

In the standard application of iterative path-integral ap-
proaches, two features greatly simplify the propagation algo-
rithm. First, the form of the Feynman-Vernon influence func-
tional is known analytically. Second, the influence functional
is pairwise decomposable.”* As discussed in the previous
section, neither of these features is necessary for the numeri-
cal implementation of an efficient iterative routine.

Recently, the analytical structure of the influence func-
tional in the spin-fermion model considered here has been
elucidated, with a modified pairwise Coulomb gas behavior
emerging at long times.*3 However, our recent numerical re-
sults have illustrated that in some cases for strong coupling
of the system to the leads, most of the relevant dynamical
evolution occurs in time intervals before strict Coulomb gas
behavior holds.??

The exact dynamics follows Eq. (2). Assuming separable
initial conditions p(r=0)=pg(t=0)pg(t=0), we can identify
the IF in the present model as

I(s5,57 5 - »sy) = {s5]ps(0)]s5)
XK(sysy-1) -~ K(s3,s7)K(s7,55)
X Try e—iHl(sjv)&/z e—iHl(sjV_l)ﬁz ..
% e—iHl(sg)ét/z p5(0) o H1s)d2 .
XeiHl(s&_l)5teiH1(sX,)5t/2}. (17)

where H;=Hpz+Hgp provides an adiabatic partitioning
of the Hamiltonian, ski are forward (+) and backward (-)
spin  states along the paths, and  K(s;,,,5;)
=(s7, e 5% s7)(s;|es%|s;, ) is the propagator matrix for
the isolated subsystem.

The reduced density matrix is time propagated by em-
ploying the iterative scheme [Egs. (9)—(12)], where the func-
tion I, [Eq. (5)] is calculated by taking ratios of the corre-
sponding truncated IF [Eq. (17)]. Note that this function is
time-translationally invariant, thus we need to calculate it
only once.

B. Results

To numerically calculate the influence functional, we ex-
press the lead Hamiltonians in terms of a finite number of
fermions. Then, as in the standard BSS Monte Carlo ap-
proach to lattice fermions,”® the resulting trace may be ex-
pressed as a simple determinant containing the one-body ma-
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FIG. 1. Polarization in the nonequilibrium spin-fermion model
at different values of the bias voltage Au=0.6 (full); Au=1.4
(dashed); and Au=2 (dotted), B=0, A=1, A=0.2, &=0.25, and
N,=8. Inset: convergence with increasing correlation time at Au
=0.6, N,=3 (dark full); Ny=4 (dashed-dotted); N,=7 (dashed); N,
=8 (dotted); and N,=9 (light full). Data were generated using 80
states per bath, which is sufficient to ensure convergence in the
regime of parameters presented here.

trices that represent exponentials of operators that are
quadratic in fermionic creation and annihilation operators. It
should be noted that this discretization of the bath leads to
systematic error in the results, unlike the case for the related
ISPI approach of Thorwart and co-workers.?” However, the
discretized approach for tracing out the bath is more flexible
in that cases where the analytic structure of the self-energy
terms, such as structured “dot” with several correlated sites,
may be easily treated. Furthermore, bosonic analogs of gen-
eralized Anderson models may be treated easily as well,*
using the boson version of the BSS formalism.* This fact
may be of importance for the recently developed bosonic
versions of dynamical mean field theory (DMFT),*>*! where
for out-of-equilibrium situations or at finite temperatures the
approach outlined here may potentially serve as a real-time
impurity solver. Fortunately, since the time intervals over
which the bath is “measured” are short, we have found that
the infinite bath result is easy reached even with a relatively
small number of effective bath fermions ~40.

We use the following parameters: A=1, B=0, Au
~0.5-2, and pV, o, =N(1-8, ,), considering only interbath
system-bath couplings, where spin polarization is coupled to
scattering events between the nonequilibrium reservoirs.
Here p denotes the density of states of each Fermi sea. For
simplicity we assume zero temperature. The generalization to
finite temperature is straightforward as outlined in Appendix
B. Since the iterative approach outlined above requires a
finite range of memory for the influence functional, we work
with a bias large enough to ensure facile convergence in the
numerical examples outlined below.

In Fig. 1 we show the dynamics of the spin polarization
(o.(1)) for several different values of the bias A, distributed
symmetrically between the L and R leads. The role of the
chemical-potential difference as a temperature like contribu-
tor to dephasing is clear.>> We analyze (inset) the memory
error in our algorithm by increasing 7., keeping & fixed. As
expected, we find that 7. roughly corresponds to 1/Apu.
Thus, for A~ 1, taking 8t=0.25, the dynamics is converg-
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30 40

FIG. 2. (Color online) Polarization in the nonequilibrium spin-
fermion model at different spin-bath couplings, A=0.1 (dashed); \
=0.2 (full); and N=0.3 (dashed-dotted). Here Au=0.6 and &t
=0.25, N,=10. The dotted line was generated using a nonequilib-
rium version of the “noninteracting spin-blip approximation” (Refs.
31 and 32).

ing for N;=5. A complete discussion of the appropriate con-
vergence analysis is presented in Appendix D for the Ander-
son model.

In Fig. 2 we compare our numerically exact results, with
the results of a generalized “noninteracting blip” approxima-
tion as formulated by Mitra and Millis.>"3> While at weak
coupling the dynamics reasonably agree, for strong interac-
tions N=0.3(mpV,,~1) the perturbative method
diverges.> We found that at weak to intermediate interaction
strengths our results systematically converge with increasing
memory time 7,. For strong interactions 6~ 1 the time step
in our simulations should be made further smaller ot~ 0.1 in
order to achieve convergence, demanding extensive compu-
tation effort as N,>16 for Au~0.6.

It would be most useful to undertake a systematic study of
the dynamical phase diagram in (7,Au,pV,, /) space in the
regions where our iterative technique is convergent. Such a
study would be quite useful for the understanding of the
approach to nonequilibrium steady state and will be the sub-
ject of a future investigation.

IV. NONEQUILIBRIUM TRANSPORT THROUGH AN
ANDERSON DOT

A. Method

The single impurity Anderson model (STAM) (Ref. 42) is
one of the most important and well-studied models in con-
densed matter physics. While it was originally introduced to
describe the behavior of magnetic impurities in nonmagnetic
hosts,? it has more recently served as a general model for
understanding transport in correlated nanoscale systems.*> In
such cases, the impurity is hybridized with more than one
reservoir, and if the chemical potentials of the reservoirs are
not identical, nonequilibrium transport will occur. Here, we
present a numerically exact scheme for calculating dynami-
cal quantities such as the time-dependent occupation and cur-
rent in such systems. The approach outlined in this section
relies on the discrete HS transformation. An alternative and
more general approach is outlined in Appendix C that does
not employ this transformation. While the approach of Ap-
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pendix C offers several advantages, it is somewhat simpler to
implement the scheme described here, and for that reason we
follow it for the sake of illustrative calculation.

The SIAM model includes a resonant level of energy e,
described by the creation operator dj'T (0=1,| denotes the
spin orientation) coupled to two fermionic leads (a=L,R) of
different chemical potentials w,,

HM = ed d,+ vdiddd, + Y &l ako
o ak,o

+ 2 Vasch i ds+He. (18)

ak,o

Here CZJW (Cqr.o) denotes the creation (annihilation) of an
electron with momentum k and spin o in the « lead, U stands
for the onsite repulsion energy, and V,; are the impurity-a
lead coupling elements. Hamiltonian (18) can be also rewrit-
ten as HAM=H,+H,, where H, includes the exactly solvable
noninteracting part, and H; includes the many-body term,

Hy=2 (U2 +e€)did,+ 2 ekcz,k,(rca,k,o-

ak,o

+ 2 VauChiods+He,

ak,o

1
Hl = U nd’Tnd,l - E(Hd,T + ”d,i) . (19)

Here nd,(,:dj,d(, is the impurity occupation number operator.
The shifted single-particle energies are denoted by E,=¢,
+U/2. We also define I'=X,I',, where [ ,=72|V,,[*d(e
—¢€,) is the hybridization energy of the resonant level with
the a metal.

Our objective is to calculate the dynamics of a quadratic

operator A, either given by system or bath degrees of free-
dom. This can be generally done by studying the Heisenberg
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equation of motion of the exponential operator ¢™ with \
here a variable that is taken to vanish at the end of the cal-
culation,

_iHAM

(A(9) = Tr(pA) = lim e p(0)e " 1M1  (20)
A—=00dN

Here p is the total density matrix. For simplicity, we assume

that at the initial time (r=0) the dot and the bath are decou-

pled, the impurity site is empty, and the bath is prepared in a

nonequilibrium (biased) zero-temperature state. The time

evolution of A can be obtained following a scheme analo-
gous to that outlined in Sec. II for the reduced density ma-
trix. For clarity, we rederive an explicit expression for the
generalized IF in the present case as well.

First we use a standard factorization of the time evolution
operator e™""1= (¢ )N and assume the Trotter decompo-
sition e/famd = (¢/Ho%2it%1iH0%2) The many body term H,
is further eliminated by introducing auxiliary Ising variables
s== via the Hubbard-Stratonovich transformation,*?

) 1
elHl o _ _E e—SK_'_(nd’T—nd’l)’

s

e—iHlﬁl — %2 e_‘YK—(nd.T_”d,l) , (21)
where .=k’ Fik", «'=sinh™[sin(tU/2)]"?, and «”
=sin"![sin(8tU/2)]"?. The uniqueness of this transformation

requires Udr<<ar. In what follows we use the following no-
tation:

eH=0) = gswalng=ng)) (22)
Incorporating the Trotter decomposition and the HS transfor-
mation [Eq. (22)] into Eq. (20), we find that at zero tempera-
ture the time evolution of A is given by

<A(t)> — lim£<O|(eiH05t/2€iHl5t€iH06t/2)NeM§(e—iH06t/2€—iHl6te—iH0§z/2)N|0>
A—0

A—0dN

. a 1 . +y . . + . "
= lim — 221\/ dsltds;: . ds]‘v_*'<0|(ezH05t/2€H+(sN)etH051/2) o (61H0§I/26H+(31)etHoﬁt/2)e)\A

X (e—iHo5[/2eH_(s]_)e—iH05t/2) o (e—iHO5t/2eH_(s&)e—iH0§t/2)|O>} , (23)
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where |0) is the initial (zero-temperature) state of the total
system. For convenience, we evaluate Eq. (23) by diagonal-
izing the Hamiltonian H, [see Eq. (19)], and rewriting H-. in
terms of the new basis

Hy=2 €bb,. Hy=VH,V",

14

Ht = Z Biﬁv’bibv’ (24)

!
vV

with S, as the transformation matrix elements. We further
transform both the operator of interest and the ground state

into the new representation A=VAV-", |0)=V-10). The IF is
identified as the integrand in Eq. (23), where we truncate
interactions beyond the memory time 7.=N,dt,

+ + 1 =
It - sSkan) = Za 019 (s ) - Gulsi)
¢ o Hok=1)8t A =i (k=1) o1

XG_(s7) - G(sn)0) (25)
with g+(s,f)=(e";10‘9”261}+(ski )eiH0d12) and G_=G'. Finally, we
can build the function I; [Eq. (4)] using Eq. (5), and the

operator of interest A may be propagated using a scheme
analogous to that developed for the reduced density matrix,
Egs. (9)-(12).

Before presenting numerical results we make the follow-
ing comments. First, in the present scheme the IF needs to be
updated at each time step since the truncated IF [Eq. (25)]
explicitly depends on the present time #,=kdt. Second, the

operator A can represent various quadratic operators. Thus
quantities such as the impurity population or the current
through the junction'> may be investigated on the same foot-
ing.

B. Results

The IF [Eq. (25)] is the core of our calculation. It is evalu-
ated numerically using the zero-temperature relationship
(0|eB|0y=det[e"],.., where b is a single-particle operator, B
=23b, and the determinant is carried over occupied states
only. Extensions to finite temperature are standard, see Ap-
pendix B. Similarly to the spin-fermion model we represent
the reservoirs by a finite set of fermions, with energies de-
termined by the metals’ dispersion relation. Calculations
must be converged with respect to the number of discrete
lead states. The N derivative in Eq. (23) is handled numeri-
cally, by calculating the IF for several (small) values of \.

In the following we typically use the following conven-
tions and parameters: a symmetrically distributed voltage
bias between two leads with Au=0.4-0.6, a reservoir band-
width of D=1, a resonant level energy E;=0.3, and hybrid-
ization strength I",=0.025-0.1. Note that the actual hybrid-
ization parameter utilized in the simulations is the coupling
Vei= I,/ 7p,, where p, is the density of states of the «
lead. For these parameters we find that convergence is
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FIG. 3. (Color online) Resonant level dynamics at different val-
ues of the voltage bias, Au=0.6 (dashed) and Au=0.4 (full). U
=0.1, I',=0.025, E;=0.3, and 7,=3.2. The dotted lines show for
reference the exact U=0 dynamics at Au=0.6 and 0.4 (top to bot-
tom). The circles are the respective Monte Carlo points. Calcula-
tions are performed at 7=0 while Monte Carlo data utilizes T
=1/200 which is effectively converged to the 7=0 limit.

achieved using L =240 states per spin per bath. We have also
verified that for Au=0.4 the memory time 7.~ 3.2 leads to
convergence with d¢r=0.8 and N,=4, provided %]53 (see Ap-
pendix D).

We begin by investigating the dynamics for a relatively
small interaction U=0.1 (I'=TI",+I'; and U/I'=2). In this
regime we are able to systematically converge the results of
our procedure with respect to the three sources of systematic
error, namely those associated with time step and bath dis-
cretization as well as nonlocal memory truncation. Figure 3
presents the time evolution of the dot occupation for two
different bias voltages, Au=0.6 (dashed) and Ap=0.4 (full),
assuming the dot (E;=0.3) is initially empty. The results are
compared to exact real-time MC simulations employing the
hybridization expansion** manifesting good agreement at
this relatively small U: at short times the IF data reproduce
the MC features while close to steady state the MC results
become increasingly unstable. The more recently developed
weak-coupling expansion®> is capable of significantly ex-
tending the time regime for which converged results may be
obtained via Monte Carlo for symmetric cases, however this
restriction limits the cases for which long-time results may
be obtained. The MC data presented in this paper were gen-
erated at finite low temperature, 1/7=200. We have verified
(data not included) that for this temperature range the popu-
lation dynamics essentially coincide with the strictly zero-
temperature case. The extremely small deviations between
MC data and our approach at U=0.1 in Fig. 3 are the result
of small differences in temperature and the fact that a sharp,
finite band is assumed in our calculations.

Figure 4 presents the time evolution of (n,,) with in-
creasing on-site interaction. While we have not been able to
overcome convergence issues for all times and all values of
%, we find that dynamics are faithfully reproduced for all %
at short times while accurate and converged results are cor-
rectly obtainable only for %153. The strict requirements for
convergence are presented in Appendix D. While this regime

205323-7



SEGAL, MILLIS, AND REICHMAN

—U=0 %
0.35/- - -u=0.1
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FIG. 4. (Color online) Population of the resonant level in the
Anderson model. The results for U=0 (full), U=0.1 (dashed), U
=0.3 (dashed-dotted), and U=0.5 (dotted) are compared with the
exact dynamics at U=0 (O) and Monte Carlo data (*, O, and <J).
The physical parameters of the model are D=1, Au=0.4, E;=0.3,
and I',=0.025. The numerical parameters used are L=240 lead
states, 7.=3.2 with N;=4 and 6r=0.8. Note that convergence and

thus agreement with Monte Carlo cannot be achieved for t=10 if

1%
V=3,

is one where perturbation theory in U is accurate,®4¢ we
believe that convergence restrictions are surmountable within
the methodology presented in this work. Future study will be
devoted to this issue. Figure 5 compares the early propaga-
tion obtained within the IF approach ((J) to the MC data (O).
Interestingly, while our approach does not capture the >
characteristic at 0<<t<<3 due to the rough time discretiza-
tion, the intermediate time dynamics is still correct. It should
be possible to devise an adaptive time propagation scheme
where the time step is increasing with time, keeping 7,. fixed.
Future work will be devoted to improving convergence for
large U and . It is interesting to note that even though the
results at large time and on-site energy (U/I'=3) are not
converged and thus do not controllably represent a reliable
estimate of population dynamics, the results are still reason-
ably close to the MC data even for %:6.

The effect of the impurity-bath hybridization strength has
been also analyzed. For I',=0.025-0.1 and U=0.1-0.3 we

Influence Functional results: square U=0.5
0.15} Monte-Carloresuts: circle o=
U=0.3
A T U=0.1
.g— 0.1r
c
\Y
0.057
.... 0.‘\‘
O o' . . . . . )
0 1 2 3 4 5 6

FIG. 5. (Color online) Short time dynamics in the Anderson
model ([J) compared with Monte Carlo data (O) for U=0.5, 0.3,
and 0.1 (top to bottom). D=1, Au=0.4, E;=0.3, I',=0.025, L
=240, and 7.=3.2 with N;=4 and r=0.8.
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have obtained results in reasonable agreement with MC data,
alike the behavior observed in Fig. 4. Furthermore, since our
method is nonperturbative in the hybridization strength, we
expect it to be useful for exploring the nonequilibrium
Kondo effect. However, the equilibrium Kondo physics can-
not be probed within our treatment since at low temperatures
the decorrelation time required for convergence becomes too
long for practical simulations.

Future work will be devoted for studying the time depen-
dent and stationary current in the Anderson model. This can
be trivially implemented using Eq. (23) with the number op-

erator of the « lead, A=Ek,,,czyk!0ca,k’a. The current at the «

contact is then given by the time derivative Ia=%<A>. Ex-
tending the formalism to include nonzero-temperature effects
is a trivial task (Appendix B). One could thus use our
method for studying the thermoelectric properties of (corre-
lated) molecular systems, a topic of recent experimental
interest.*” Note that contrary to wave function methods,*3
convergence in our scheme is facilitated by going beyond the
strictly zero-temperature limit.

V. CONCLUSIONS

We have presented here a general path-integral-based it-
erative scheme for studying the dissipative dynamics of bias-
driven nonequilibrium systems. Our method relies on the fi-
nite range of bath correlations in out-of-equilibrium cases,
thus interactions within the influence functional may be trun-
cated beyond a memory time dictated by the nonequilibrium
conditions, and an iterative and deterministic scheme may be
developed. This scheme is in principle exact for cases where
convergence with respect to truncation of memory effects is
achieved.

The philosophy of our approach is similar to the previ-
ously developed ISPI approach of Thorwart and
co-workers.?” The distinction between the method presented
here and ISPI is confined to the propagation scheme and the
technique via which the leads are eliminated. The discretized
BSS-type approach? to tracing out the reservoirs used here
may be employed in situations where the structure of the
memory term is difficult to obtain analytically. Furthermore,
the matrices involved in the iterative scheme are fixed in
size, and this fact may present numerical advantages at very
long times. While our approach introduces an additional
source of systematic error related to discretizing the leads,
we have found that this error is easily controlled with limited
numerical cost. Thus, our approach presents a related but
complimentary methodology to the ISPI technique. It should
be noted that currently the approach presented here and the
ISPI technique appear to have difficulty converging in simi-
lar regions of parameter space that are accessible in some
cases by, for example, the weak-coupling Monte Carlo
approach.* However approaches such as ISPI and the meth-
odology presented allow for an accurate description of long-
time dynamical features when they do converge, something
that is generically difficult with Monte Carlo schemes. In this
regard our approach is also complimentary to, and not com-
petitive with, expansion based Monte Carlo schemes.**
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We have applied our technique to two prototype models:
(i) the spin-fermion model of a spin coupled via a dipole-
type interaction to two leads under a potential bias and (ii)
the Anderson model, where a resonant level with an onsite
repulsion is coupled to nonequilibrium leads. In the first case
the dynamics of the tunneling system was investigated, re-
covering damped oscillations for weak-intermediate cou-
plings with the bias playing a role analogous to that of the
temperature in equilibrium systems. For the nonequilibrium
Anderson model we focused our study on the resonant level
population. Our method yields results in reasonable agree-
ment with numerically exact Monte Carlo simulations for
weak to intermediate onsite interactions U. For strong U de-
viations are observed. The results presented in Appendix D
suggest that the deviations are related to memory and time-
step truncation errors which we have been unable to control
at the present time. Future work will be devoted to this issue.

Our path-integral formalism could be extended to handle
bosonic degrees of freedom, representing, e.g., the nuclear
coordinates of the molecular bridge in the Anderson model
(Anderson-Holstein model). In particular, a phononic bath at
thermal equilibrium could be easily incorporated, relying on
the analytic form of the Feynman-Vernon influence
functional.*® Such a method, involving both fermionic and
bosonic degrees of freedom, would become useful for ex-
ploring vibrational effects in electron conduction. Other
models, e.g., the multilevel Anderson model or a multisite
chain, could be treated by adopting the formulation of Ap-
pendix C. In summary, we expect this versatile numerically
exact approach to become useful in complementing existing
tools, increasing our understanding of nonequilibrium quan-
tum transport and dissipation characteristics in many body
models.
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APPENDIX A: JUSTIFICATION OF THE
TRUNCATION SCHEME

Here, we justify the breakup of the IF as prescribed by
Eq. (8), demonstrating that the terms neglected account for
interactions beyond the memory range 7. Consider for sim-
plicity the functional

1(s7,85 .53 ,55)

I(s7,55,83)

“'t)

+ + + + 4y + + *
I(sg .87 .55 583 ,85) = I(sy 87,55 ,53

s

(A1)

truncated here by following Eq. (8) with N,=3. Using a cu-
mulant expansion for the total IF,>>2% we write the IF as a
product of n-body interaction terms, I=1I(2)X1(3)X1(4)

PHYSICAL REVIEW B 82, 205323 (2010)

X I(5), where each term is an exponent of a sum of the
n-body terms, For example, 1(2) ~ ¢ 8 with pairwise in-
teractions g;;, I(3) ~ e >i/4%iik, incorporating “three-body”
interactions g; ; ;. Substituting this structure into Eq. (A1), we
find that the following terms are not present on the right-
hand side: The two- and three-body terms g4, £0.1.4» £0.2.4-
and g 3 4, four-body terms g¢ 1.4, 0.134- and gp,34, and a
five-body element g ; » 3 4. These nonlocal interactions, con-
necting spins beyond the memory range specified, N,=3, are
assumed to be small and are therefore discarded in our trun-
cation scheme. Larger memory blocks, connecting more dis-
tant time slices, may systematically be included until conver-
gence with truncation of memory terms is reached.

To make this discussion concrete, consider a situation
where nonequilibrium Coulomb gas behavior holds, as dis-
cussed in Refs. 32 and 33. In such cases, the total influence
functional will be of the form I~ exp[2;- ,Co(|t;—1;])], where
Cy(t) = Apt| up to logarithmic corrections. Consider now Eq.
(8). Clearly the leading term contains all interactions be-
tween “charges” separated by a distance in time that does not
exceed , namely, I(soI ,sli ... ,s,%,x)

(57,57 50 oSN 41)

o=t
Ny N1
~exp[ 23,2750 Co([t;=1;)]. Terms of the form )
include only interactions between charges interacting over
the time intervals |t,—ty .|, where 0<n<N,+1, without
. R . . + o+ +
double counting terms already contained in I(sy ,s; ,...,Sy ).

This procedure is then iteratively continued until the com-
plete influence functional is constructed. The error accrued
originates from the neglect of terms in the exponent of the
order Au7, where 7=|t,~t,| and b—a=N,+1. Thus, the pro-
cedure is rendered controlled and is expected to converge to
the exact result as long as N, is made large enough. It should
be noted that the approach outlined here is more general than
this and is expected to hold at short times or very large
couplings where Coulomb gas behavior may break down, as
discussed in Refs. 32 and 33.

APPENDIX B: EXTENSIONS OF THE IF TECHNIQUE TO
FINITE TEMPERATURES

We present here the natural extension of our approach to
finite temperature. The core of our numerical calculation is
the IF, incorporating the Fermi sea degrees of freedom, e.g.,
Eq. (17) for the spin-fermion model or Eq. (25) for the
Anderson model. Assuming for simplicity a single Fermi sea,
consider the following IF-like object:

Cy="Trgle"1eM2py], (B1)

where M, and M, are quadratic operators and pp
=e P8/ Trg[e PHB], Hy is the bath Hamiltonian, Eq. (14).
This correlation function can be expressed by single-particle
operators,*

Cr=det[I - f(e) + ™1e"f(€)]. (B2)

Here f(e)=[1+eP ]! is the Fermi-Dirac distribution
function, S is the inverse temperature, / is the unit operator,
and m, and m, are single-particle operators corresponding to
M, and M,, respectively. This expression can be trivially
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extended to include more  exponential terms,
eMieM2 . eMN, as necessary for the evaluation of the IF
expression. For multiple-independent reservoirs, pp=p; ® pg,
the above relation can be generalized,

Cpe=Tr Trgle"1eM2p; @ prl=det{{[1, - fr(e)] ® I}

X{Ur~fr(O] ® I} +e™e™[f1(€) ® Ig][fr(e) ® I ]}.
(B3)

Here 1, is the identity matrix for the « space; a=L,R, and
f(€)=[1+ePalera)]1 The above expressions reduce to the
ones used in the text for 7=0.

APPENDIX C: AN ALTERNATIVE FORMULATION:
NONEQUILIBRIUM TRANSPORT THROUGH
AN ANDERSON DOT

We present here an alternative formulation for calculating
the dot properties in the SIAM without invoking the
Hubbard-Stratonovich transformation. This formulation is
based on a different Trotter decomposition than that used in
Sec. IV. While the resulting expressions are more complex
for the decomposition described here, it has the advantage
that the resulting IF need not be updated each time step.
Furthermore, since fewer terms of the Hamiltonian are split
in the Trotter decomposition, it is possible that larger time
steps may be taken with the decomposition presented here.
Further work investigating this approach, which is not con-
fined to the Anderson model, will be presented in a future
work. We refer to the approach developed in Sec. IV as
SIAM 1, and to the method of this appendix as SIAM II.

We begin by partitioning Hamiltonian (18) as follows: H,,
includes the subsystem (dot) terms, and H, includes the two
noninteracting leads (Hj) and system-bath couplings (Hgp)

H*™M=Hy+H,, H =Hp+Hgp,

HO = E ednd’0+ Und’Tnd’l,

o

t "
Hz= 2, €CoroCako Hsp= > VaiCorods+H.C.

ak,o ak,o

(CD

Here n, ,=d.d, is the impurity number operator and cL,W is
a creation operator of an electron at the « lead with a spin o
and momentum k. Note that H, can be explicitly described
by a four-state system, =||,0), and
|4)=[1,]), corresponding to an empty dot, a single occupied
dot of o=1,], and a double occupancy state. When U is
very large (U— ), we effectively have a three-state system
since double occupancy becomes negligible. The energies of
these four subsystem states are E1=0, E;3=¢,, and E,;=¢,
+U.

Consider the reduced density matrix pg=Trg{p} obtained
by tracing the total density matrix p over the reservoir de-
grees of freedom. The time evolution of pg(r) is exactly
given by

PHYSICAL REVIEW B 82, 205323 (2010)

ps(a.a’ 1) = Trg(ale ™ 1p(0)e ™ |a"), (C2)

where |a) and |a’) are subsystem states, as described above.
Using the standard Trotter breakup, e'=(e)N, St=t/N,
and e ~ piHo812 yiH} 8 ,iH( 512

path-integral formulation,

ps(a,a',t)=fds6f dst---fds,‘:,_lf dsgj ds]---J‘ds,_\,_1

X TrB{<a|e—iH0§z/26—iH1 5te_iH05t/2|S;/—l>

, we can rewrite Eq. (C2) in a

X (sh_,|e7TH0O2gmiH Ot g=it 812 oty
><<s$|p(0)|s6) e <S1—V_2|eiH051/2€iHl§zeiH05t/2|s1—V_l>
X <SI_\1—1 |eiH06t/ZeiH| 6teiH05t/2|a/>}, (C3)
where s; are subsystem states. As an initial condition we may
assume that p(0)=pgps(0) with the bath (B) uncoupled to the
subsystem. We focus next on the following matrix elements
in Eq. (C3):
G, (1) = {a|eHod2gmiH 181 =ito312| )
— e—i(Ea+Eb)§z/2<a|e—iH1 6t|b> ) (C4)
To compute {ale”1%|b) note that it is advantageous to use
again the Trotter splitting

<a|e—iH] 5t|b> ~ e‘iH35’/2<a|e—iH585’|b>e‘iHB5”2. (C5)
We thus focus next on the matrix element
0, = (aleMssb), (C6)

a quadratic operator in the space of the noninteracting elec-
trons. It is useful to define the “composite” fermion ¢,
=2 iVakCako» leading to Hgp=> (co ydo+dico,). In this
representation a direct expansion of the exponential gives

eMlss = + (cosh \ — 1)d, + sinh \d, (C7)

with N\=—idt, d;=Hgp, and d,=2, (doch;; +€0. adadT+H c.).
The operator [Eq. (C6)] is therefore of the form, O, ,=«a
+Bcy o+ 6 cg ot ycg #Co.0F Y Co. Uco »» With constant coeffi-
cients a, 3, y. Substituting the pieces [Egs. (C5)—(C7)] into
Eq. (C4) yields

G, (1) = o~ {(Eq+Ep) 812 e—iHBﬁt/Zéa , e—iHBSt/Z’ (C8)

incorporating linear combinations of bath operators ¢ , up to
a quadratic order. Finally, we put all pieces together into Eq.
(C3) and obtain the reduced dynamics

ps(a,a',t)=fdsg'--JdsX,_IJ‘ dsa”'Jds,_\,_1<sg|p5(0)|s6>

Xexp[—idt >, Eg++idt Y, E,-
= =

—i(E, + ES(+))5t/2 +i(E, + ES—)b‘t/Z]

_’H85’0 P
N 1’ N 2

. és’;,sg@_iHB&/z)PB(O) (e—iHBﬁr/Z

% TrB{(e_iHB o2 éa’s

Xe—iHBﬁt ..
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FIG. 6. Convergence of the dot occupancy with increasing num-
ber of bath states L. E;=0.3, I',=0.025, N;=4, and 7,=3.2. Full
lines (top to bottom); U=0.5, L=20, 40, 80, 120, and 240; dashed
lines (top to bottom): U=0.1, L=20, 40, 80, 120, and 240. Inset:
data as a function of L' at r=20, U=0.5 (square) and U=0.1
(circle).

A —iHgdt A —iHgot A —iHgdt/2
XO.V(_J,sl_e B Oxl_,s;e BT OSI_V—I’a,e B )}
(C9)

Identifying the integrand as the IF, we can use the approach
of Sec. II, define the truncated IF [, and iteratively propagate
the reduced density matrix to long times.

The approach developed here (STAM II) has three main
advantages over the method described in the main text
(SIAM 1), see Sec. IV. First, since the present method does
not rely on the Hubbard-Stratonovich transformation it can
be applied to general many body interaction Hamiltonians
while SIAM T is restricted to the Anderson model. Second,
since the Trotter error in SIAM II is due to system-bath
factorization, rather than one-body-many-body splitting as in
SIAM 1, the method described here should be beneficial in
calculating dynamics of weakly coupled system-bath models
with arbitrarily large many body (local) interactions. Finally,
this method also suggests a computational advantage over

0.3 e :
0.25 oo 288
03} “TTe——
~, 02r =16
[} —~
< & 0.25
~ 0.5} / ~
¥
1
0.1 / 02 t=6.4
O e
0.05r // 0 1 2 3
/ (651>
0 L L L L L
0 5 10 15 20 25 30

FIG. 7. Convergence of dot occupancy reducing the time step
St=r./N,. E;=03, U=0.5, [',=0.025, 7,=3.2, L=120, and &
=1.6 (full); &r=1.07 (dashed); r=0.8 (dashed-dotted); and &t
=0.64 (dotted). Inset: data as a function of (&r)> for three represen-
tative times.
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FIG. 8. (Color online) Convergence of dot occupancy with in-
creasing memory size 7. E;=0.3, U=0.1, I',=0.025, L=120, and
6r=0.8. N,=2 (dashed-dotted); N,=3 (X); N,=4 (dashed); N,=5
(full); Ny=6 (dotted); and N,=7 () Inset: dot population vs 7, at
a specific time, r=12.

SIAM 1 since the IF here [integrand of Eq. (C9)] is time
independent, unlike the IF of Eq. (25) which needs to be
recalculated at each time step.

APPENDIX D: CONVERGENCE ANALYSIS FOR THE
ANDERSON MODEL

There are three separate sources of systematic error within
our approach. (i) Bath discretization error. The electronic
reservoirs are explicitly included in our simulations, and we
use bands extending from —D to D with a finite number of
states per bath per spin (L). This is in contrast to standard
approaches where a wideband limit is assumed and analyti-
cal expressions for the reservoirs Green’s functions are
adopted.'>?7#* (ii) Trotter error. The time discretization error
originates from the approximate factorization of the total
Hamiltonian into the noncommuting H, (two-body) and H,
(many-body) terms, see text after Eq. (20). While for U
—0 and for small time steps 6f— 0 the decomposition is
exactly satisfied, for large U one should go to a sufficiently
small time step in order to avoid significant error buildup.
(iii) Memory error. Our approach assumes that bath correla-
tions exponentially decay resulting from the nonequilibrium
condition Ap# 0. Based on this crucial element, the influ-
ence functional may be truncated to include only a finite
number of fictitious spins N,, where 7.=N,0t~1/Au. The
total IF is retrieved by taking the limit N;— N, (N=t/ ).

These three errors can be systematically eliminated by
increasing the number of bath states, choosing a small
enough time step, and adopting a sufficiently long memory
time. Note however that the last two strategies are linked:
increasing 7, essentially means increasing the time step since
the memory length is restricted to small values N,=4-6 for
practical-computational reasons. Thus, as in standard
QUAPL?* one should find an optimal balance between the
time-step error and the memory size that correctly represents
the dynamics. Reference 50 suggests a systematic approach
for reaching convergence using the QUAPI method, elimi-
nating the Trotter discretization error and the memory trun-
cation inaccuracy by extrapolating the data to vanishing time
step and to infinite memory time.
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A similar idea can be adopted here. First the bath finite-
size error can be eliminated by systematically increasing the
number of fermions at each lead. As an example, Fig. 6
presents the dot population for U=0.1 and U=0.5 taking L
=20, 40, 80, 120, and 240 (top to bottom). The inset shows
that convergence can be reached, and that the occupancy is
systematically decreasing with L. Next, the Trotter error can
be eliminated by extrapolating the data to the 6f— 0 limit.
Figure 7 presents as an example the occupancy for Au=0.4
using 7,=3.2, and 5t=1.6,1.05,0.8,0.64. The inset manifests
convergence as a function of (&t)>. Note that in the
asymptotic limit the data points are slightly enhanced, prac-
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tically canceling the effect of the bath discretization. Finally,
the memory effect is analyzed in Fig. 8. For the parameters
employed here (E;=0.3,U=0.1,I',=0.025,An=0.4) con-
vergence is arrived at 7.~4 (inset), in agreement with the
rough estimate 7.~ 1/Au. We have not been able to obtain
full convergence for U/T"=3.

Using this analysis, we have recalculated Fig. 4 extrapo-
lating our data to (i) L—oe, (ii) or—0, and (iii) 7,— o°. Since
the extrapolations (i) and (ii), bring about counter contribu-
tions, see Figs. 6 and 7, the overall effect of the bath-time
step-memory extrapolations on the occupation is rather
small, and Fig. 4 remains essentially intact.
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