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Heat transfer in the spin-boson model: A comparative study in the incoherent tunneling regime
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We study the transfer of heat in the nonequilibrium spin-boson model with an Ohmic dissipation. In the
nonadiabatic limit we derive a formula for the thermal conductance based on a rate equation formalism at the level
of the noninteracting blip approximation, valid for temperatures T > TK , with TK as the Kondo temperature. We
evaluate this expression analytically assuming either weak or strong couplings, and demonstrate that our results
agree with exact relations. Far-from-equilibrium situations are further examined, showing a close correspondence
to the linear response limit.
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I. INTRODUCTION

The spin-boson (SB) model, with a two-level system
immersed in a dissipative thermal environment, can describe
different physical problems: electron transfer in condensed
phases [1], molecular electronic conduction [2], the Kondo
physics [3], and the decoherence behavior of superconducting
qubits [3,4]. An extension of this model, coupling the spin
subsystem to two thermal reservoirs at different temperatures,
has been suggested as a minimal model for exploring the
phenomenology of quantum heat transfer in anharmonic
junctions [5]. We refer below to this extension as the “nonequi-
librium spin-boson model” (NESB), and focus on its heat
transfer characteristics in the steady-state limit. This model
complements other descriptions of quantum heat transport in
low dimensions [6–8], particularly demonstrating the thermal
diode effect [9,10].

The behavior of the NESB model can be explored by
developing open quantum systems methodologies to the
nonequilibrium (two-bath) case. Recent studies worked out
such generalizations on the basis of perturbative quantum
master equation tools [5,11–14], the Keldysh Green’s function
formalism [15–17], and the noninteracting blip approxima-
tion [5,18]. Similarly, brute force numerically exact simula-
tions of the SB model have been advanced to explore the heat
transfer dynamics in nonequilibrium settings: the multilayer
multiconfiguration time-dependent Hartree theory [19], influ-
ence functional path integral techniques [20], and Monte Carlo
simulations [21]. Other related treatments include the atomistic
Green’s function approach [22,23], the generalized quantum
Langevin equation [24,25], and self-consistent extensions,
incorporating (effective) anharmonicities [24,26,27]. These
developments are not trivial: The dissipative dynamics of a
subsystem is reached by time-evolving its (reduced) density
matrix. In contrast, the operator describing the heat current
involves degrees of freedom of the subsystem and reservoirs.
Thus, one should first work out a closed-workable expression
for the heat current, such that it only depends on degrees of
freedom of the subsystem.

A formally exact construction for the heat current in
quantum junctions has been derived in Ref. [15] from the per-
turbation expansion of the nonequilibrium Green’s function.
This formula expresses the heat current of the NESB model in
correlation functions of the spin subsystem. This expression
can be used to obtain the Redfield Born-Markov result [15],

but more fundamentally, its linear response limit was evaluated
with Monte Carlo simulations, to explore signatures of Kondo
physics in thermal conduction [21].

In parallel to these developments, in a series of recent
papers we adopted the noninteracting blip approximation
(NIBA) [1] and introduced an approximate expression for the
heat current, valid in the nonadiabatic limit and potentially
far from equilibrium [5,11,18]. This was achieved in the
picture of the polaron-shifted NESB Hamiltonian. We energy-
resolved the quantum master equation in the nonadiabatic
limit, then derived the cumulant generating function of the
system [5,18]. The resulting expression for the heat current,
a convolutionlike integral, conjoins transition rate constants
between the two spin states. This approach thus builds on the
analytical and numerical machinery developed to treat electron
transfer reactions at the level of the Fermi “golden rule” [1,2].
Other advantages of this heat-transfer NIBA formalism are
potential extensions to handle multistate junctions [11] and
far-from-equilibrium situations [18].

In this paper we focus on the behavior of the thermal
conductance in the NESB model at high temperatures. Our
goal is to prove that the approximate heat-transfer NIBA
treatment [5,18] provides analytic results in agreement with
exact simulations [21], in the right limits. This correspondence
establishes the heat-transfer NIBA formalism, which could
be advanced to treat more complex multistate junctions.
Furthermore, we apply our method away from linear response
and discuss the behavior of the current in the limits of weak
and strong system-bath couplings.

The paper is organized as follows. In Sec. II we present
the NESB model. We further include the exact formula for
the thermal conductance and its high temperature limits by
following Ref. [21]. In Sec. III we present the approximate
heat-transfer NIBA expression, use it to derive closed forms
for the thermal conductance at weak and strong couplings, then
include numerical results. Section IV summarizes our work.

II. MODEL AND EXACT CURRENT FORMULA

The model comprises a two-state system (spin) attached to
two bosonic reservoirs (ν = L,R), and we focus here on the
unbiased case with degenerate spin levels,

H = ��

2
σx +

∑
ν,k

[
�σz

2
λk,ν(b†k,ν + bk,ν) + �ωkb

†
k,νbk,ν

]
. (1)
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The operators σi (i = x,y,z) are the Pauli matrices, � stands
for the tunneling frequency between the spin states, and
b
†
k,ν (bk,ν) is the creation (annihilation) operator of a boson

(e.g., phonon) with a wave number k in the ν reservoir. The
interaction of the subsystem with the environment can be
characterized by the spectral density function

Jν(ω) =
∑

k

λ2
k,ν δ(ω − ωk). (2)

Below we assume that an Ohmic function characterizes both
reservoirs,

Jν(ω) = 2ανωe−ω/ωc . (3)

Here αν is a dimensionless interaction parameter between the
spin subsystem and the ν reservoir, and we introduce the
definition α ≡ αL + αR . For simplicity, the cutoff frequency
ωc is taken identical at both baths. The two reservoirs
are separately prepared in a canonical-equilibrium state of
temperature Tν . At time t = 0 we couple the two baths
indirectly through the subsystem, then wait for steady state
to set in.

An exact Meir-Wingreen-like heat current expression [28]
has been derived in several works [15,29–31]. In the steady-
state limit it can be regarded as a many-body extension of the
Landauer formula [32]. Assuming a sharp cutoff at ωc [(rather
than the exponential form of Eq. (3)], this Meir-Wingreen-type
heat current was written in Ref. [21] as

jq= �
2αLαR

(αL + αR)

∫ ∞

0
dω ωχ ′′(ω)Ĩ (ω) [nL(ω) − nR(ω)] . (4)

Here Ĩ (ω) = ωθ (ωc − ω)θ (ω), χ ′′(ω) is the imaginary part
of the Fourier’s transform of the response function of
the spin, χ (t,t ′) = i�−1θ (t − t ′)〈[σz(t),σz(t ′)]〉 , and nν(ω) =
[e�ω/kBTν − 1]−1 stands for the Bose-Einstein distribution
function. In the linear response regime jq ∼ κ(TL − TR), and
we extract the thermal conductance from the relation

κ = djq

dTL

∣∣∣∣
TL→TR=T

. (5)

Equation (4) then reduces to

κ = kB�
αLαR

(αL + αR)

∫ ωc

0
dωSα(ω) ω2

[
β�ω/2

sinh(β�ω/2)

]2

, (6)

with kBT = β−1 and the spectral function Sα(ω) ≡ χ ′′(ω)/ω.
Equation (6) was used in Ref. [21] as the basis for exact numer-
ical simulations: The spin response function was evaluated by a
Monte Carlo method, performed by noting that the equilibrium
partition function of the SB model can be mapped onto the
one-dimensional Ising model with long range interactions [21].
These simulations had indicated that the thermal conductance
follows the scaling form

κ = 4k2
BTK

�

αLαR

(αL + αR)2
f (α,T /TK ), (7)

where f (T/TK ) ∝ (T/TK )3 at low temperatures, T 
 TK ;
TK is the Kondo temperature in the system, a function of the
microscopic parameters �, ωc, and α. In the range 0 < α < 1

it is given by [1,3,21]

TK = ��

kB

(
�

ωc

)α/(1−α)

[(1 − 2α) cos(πα)]1/2(1−α). (8)

When α � 1, TK = 0. Here (x) represents the Gamma
function.

We now discuss the high temperature limit, T > TK , of
Eq. (6) by following Ref. [21]. In the weak coupling limit
we use the zeroth-order spin correlation function, namely, the
isolated spin solution. This exercise results in the form

κα
1 = kB

αLαR

(αL + αR)

π�

2n(�) + 1

[
β��/2

sinh(β��/2)

]2

,

β��
1−−−−→ �π

2

�2

T

αLαR

αL + αR

. (9)

Here n(ω) = [eβ�ω − 1]−1 denotes the Bose-Einstein distri-
bution function at the inverse temperature β = 1/kBT . More
generally, one can derive a weak coupling formula for the
nonequilibrium heat current, directly from the Born-Markov
quantum master equation [5,11,18],

jq = ��
LR[nL(�) − nR(�)]

L[1 + 2nL(�)] + R[1 + 2nR(�)]
. (10)

Here ν(ω) = π
2 Jν(ω) stands for the system-bath interaction

frequency, evaluated at the frequency � in Eq. (10).
Beyond the weak coupling limit and at high temperatures,

TK 
 T 
 �ωc/kB , a closed expression for the thermal
conductance is achieved by adopting the spin spectral function
at the level of the noninteracting blip approximation [1,3]

Sα(ω) � 2ζ/[(ω2 + ζ 2)�ω coth(β�ω/2)], (11)

where ζ ∝ (�2/ωc)(β�ωc)1−2α; recall that α = αL + αR .
Plugging this expression into Eq. (6) we arrive at the form [21]

κ � C kB�2

ωc

(
kBT

�ωc

)2α−1

. (12)

Here C is a prefactor which weakly depends on the coupling
strength. We emphasize that this result was derived from the
exact heat current formula (6), with an approximate-NIBA
spin-spin correlation function.

III. APPROXIMATE HEAT CURRENT FORMULA:
NONINTERACTING BLIP APPROXIMATION

The NIBA scheme is valid in the nonadiabatic limit
ωc � �. It can faithfully simulate the SB dynamics at strong
system-bath interactions and/or at high temperatures in the
Ohmic case. It is also exact for the unbiased model at
weak damping. We focus on the occupation of the spin
states p1,0(t) = [1 ± 〈σz(t)〉]/2, 〈σz(t)〉 = tr[ρ(0)σz(t)], ρ(0)
is the initial-total density matrix. Under NIBA they satisfy an
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integrodifferential equation [1],

dp1(t)

dt

= −�2

2

∫ t

0
e−Q′(t−τ ) cos[ω0(t − τ ) − Q′′(t − τ )]p1(s)dτ

+ �2

2

∫ t

0
e−Q′(t−τ ) cos[ω0(t − τ ) + Q′′(t − τ )]p0(τ )dτ.

(13)

Here ω0 stands for the spin spacing in the biased SB model,
when augmenting the Hamiltonian (1) with the term �ω0σz/2.
The function Q(t) = ∑

ν Qν(t), Qν(t) = Q′
ν(t) + iQ′′

ν(t) in-
cludes real and imaginary components with,

Q′
ν(t) =

∫ ∞

0
dω

Jν(ω)

ω2
[1 − cos(ωt)][1 + 2nν(ω)],

(14)

Q′′
ν(t) =

∫ ∞

0
dω

Jν(ω)

ω2
sin(ωt).

By energy-unraveling Eq. (13), we derived in Ref. [18] a closed
expression for the steady-state heat current, defined positive
when flowing left to right,

jq =
(

�

2

)2
�

2π

∫ ∞

−∞
ωdω

[
kR(ω)kL(ω0 − ω)pss

1

− kR(−ω)kL(−ω0 + ω)pss
0

]
, (15)

with pss
1,0 as the steady-state population of the spin states.

The elements kν(ω) are related to the single-bath nonadiabatic
(Fermi golden rule) transition rate constants, only missing the
�2 prefactor,

kν(ω) =
∫ ∞

−∞
eiωt e−Qν (t)dt. (16)

It can be shown that these terms satisfy the detailed balance
relation,

kν(−ω) = kν(ω)e−β�ω. (17)

In the unbiased case, ω0 = 0, pss
0 = pss

1 = 1/2, and Eq. (15)
reduces to the compact form

jq =
(

�

2

)2
�

4π

∫ ∞

−∞
ω[kR(ω)kL(−ω) − kR(−ω)kL(ω)]dω.

(18)

It is interesting to note that the terms kν(ω), which directly
correspond to the transition rates in the biased SB model,
serve as the elemental ingredient in the heat current expression,
in the unbiased NESB model. We can understand this
connection by interpreting Eq. (18) as follows: The total
energy current is given by a sum over all possible energy
exchange processes, with the amount of energy ω transferred
from L to R; the weight is given by the combination of
terms kν(±ω). Using the linear response definition, Eq. (5),
and the detailed balance relationship, we obtain the thermal

conductance

κ =
(

�

2

)2
�

4π

∫ ∞

−∞
ω

[
kR(ω)

dkL(−ω)

dTL

− kR(−ω)
dkL(ω)

dTL

]
dω

∣∣∣∣
TL→TR=T

=
(

�

2

)2
�

2

4πkBT 2

∫ ∞

−∞
ω2kR(ω)kL(−ω)dω. (19)

In the final expression kR(ω) and kL(ω) are evaluated at the
same temperature T ; these terms may still differ if αL = αR .
Equation (19), a formal expression for the thermal conductance
within NIBA, is the first main result of this work.

The nonadiabatic golden rule factors kν(ω) of Eq. (16) have
been the focus of many studies, particularly in the context
of electron transfer reactions in solution [1,2]. We can now
build on these results, and obtain the heat current in different
limits. For example, in the Ohmic case, in the scaling regime,
kBT ,�ω < �ωc, it can be shown that [1]

kν(ω) = 1

ωc

(
�ωc

2πkBT

)1−2αν |(αν + i�ω/2πkBT )|2
(2αν)

e�ω/2kBT ,

(20)

with the Gamma function (x). This result was derived for
the SB model, with ω serving as the energy gap between
the spin states, limited to small values, ω < ωc. It can be
used in Eq. (19), replacing both kL(−ω) and kR(ω). Since
the heat current is dominated by bath modes of significant
thermal occupation, it is consistent to evaluate the integral up to
the frequency ∼kBT /� < ωc where Eq. (20) holds. At strong
coupling and high temperatures we ignore the ω dependence
within the  function, and we end up with the relation

κ � A�
2

(
�

ωc

)2 1

kBT 2

(
�ωc

kBT

)2−2αL−2αR
∫ kBT /�

0
ω2dω

� AkB�2

ωc

(
�ωc

kBT

)1−2α

. (21)

Here A is a constant which weakly depends on α through the
 function in Eq. (20). This result, our second contribution,
agrees with Eq. (12) and with exact numerical simulations [21].
One should note that the derivation of Eqs. (12) and (21)
differs: While the former is derived from the exact formula,
only the spin susceptibility is approximated based on the
NIBA; Eq. (21) results from the approximate heat current
expression (15) with the nonadiabatic rates kν(ω). In the weak
coupling limit, αν 
 1, the Fermi golden rule expression (16)
reduces to [1]

kν(ω) =
(

2πkBT

��

)2αν 4πανω

(2πανkBT /�)2 + ω2

1

1 − e�ω/kBT
.

(22)

We use this form to replace both kL(−ω) and kR(ω) in Eq. (19),
to obtain

κα
1 =
(

�

2

)2
�

4π

∫ ∞

−∞

(4π )2αLαRω3dω

[(2παLkBT /�)2 + ω2][(2παRkBT /�)2 + ω2]

dn(ω)

dT
. (23)
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FIG. 1. (Color online) The Kondo Temperature TK of Eq. (8)
with αL = αR , ωc = 10�. NIBA results are valid in the high
temperature regime.

Recall that n(ω) is the Bose-Einstein distribution function.
In the high temperature limit, dn/dT ∼ kB/�ω. We use the
definite integral

∫ ∞
−∞

x2

(a2+x2)(b2+x2)dx = π
a+b

, and reach the
thermal conductance

κα
1 = �π

2

�2

T

αLαR

(αL + αR)
, (24)

in agreement with the high temperature limit of Eq. (9) and
other weak coupling schemes [5,11]. We have thus confirmed
that for Ohmic baths the NIBA heat current formula (15) pro-
duces the high temperature limit of the thermal conductance,
in agreement with exact Monte Carlo simulations [21] and
Born-Markov weak coupling expansions [5]. Analytic results
in the classical “Marcus” regime, kBT > �ωc, were discussed
in Refs. [5,18,33] and we do not repeat them here.

We display next numerical results of the thermal conduc-
tance using NIBA, Eq. (19) with the rates (16). In Fig. 1
we plot the Kondo temperature as a function of the coupling
parameter α. This figure identifies the high temperature region
T > TK in which NIBA simulations are meaningful. The
thermal conductance is presented in Figs. 2 and 3, and we
confirm that the NIBA formula results in correct forms at
weak and strong couplings. Specifically, at strong coupling,
the relation lnκ ∝ −α is obeyed. To extract numerically the
proportionality factor more extensive simulations are required
in the �ωc > kBT limit, e.g., to confirm that at different

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

α/2

κ
/
(k

B
Δ

)

 

 

kBT/h̄ = 3Δ
kBT/h̄ = 2Δ
kBT/h̄ = Δ

FIG. 2. (Color online) Thermal conductance as a function of α,
calculated from Eq. (19) with the nonadiabatic rates (16), assuming
an Ohmic form and αL = αR , ωc = 10�.
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g 1

0
κ

(b)

kBT/h̄ = 3Δ
kBT/h̄ = 2Δ
kBT/h̄ = Δ

0 0.01 0.02
0

0.005

0.01

α/2

κ
/
(k

B
Δ

)

(a)

FIG. 3. (Color online) Thermal conductance as a function of α,
with the same data as in Fig. 2. (a) Weak coupling limit: NIBA
expression Eq. (19) (symbols), Born-Markov result (9) (dashed lines).
(b) Strong coupling limit, demonstrating the scaling (21). The legend
describes both panels.

temperatures, T1 and T2, the respective conductances κ(T1)
and κ(T2) satisfy κ(T1)

κ(T2) ∼ ( T2
T1

)1−2α .
In Fig. 4 we explore the behavior of the heat current beyond

linear response, adopting Eq. (15). For spatially symmetric
systems deviations from equilibrium manifest themselves
predominantly in the crossover (weak-to-strong) region. When
asymmetry in the form αL = αR is implemented, deviations
are more pronounced since (TL − TR)2n terms, n = 1,2, . . .,
responsible for thermal rectification, contribute. Particularly, at
weak coupling the junction better conducts when it is coupled
weakly to the hot terminal, and more strongly to the cold one.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

α/2

(a) αR = αL

κ/(kBΔ)
jq/[(TL − TR)kBΔ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01
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0.03

0.04

(b)

α/2

κ/(kBΔ)
jq/[(TL − TR)kBΔ], αR = 2αL

jq/[(TL − TR)kBΔ], αL = 2αR

FIG. 4. (Color online) The NESB model beyond linear response:
Heat current (15) divided by the temperature difference and thermal
conductance, Eq. (19) at (a) αR = αL, (b) αL = αR . In both cases
kBTL/�� = 1.5, kBTR/�� = 0.5, ωc = 10�. The thermal conduc-
tance is evaluated at the average temperature T = (TL + TR)/2.
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Formally, we expand the current in powers of δT = TL − TR ,

jq = κδT + κ2
δT 2

T
+ κ3

δT 3

T 2
+ · · · . (25)

Considering the spatially symmetric case at strong coupling,
we can readily prove that the heat current jq follows the func-
tional form (21), preserving linear response characteristics: We
plug Eq. (20) in the heat current expression (18), replacing the
four terms kL(±ω) and kR(±ω). In the strong coupling limit
we ignore the α dependence of the  function. We temperature-
bias the baths in a symmetric manner, TL = T + δT /2 and
TR = T − δT /2, and reach the relation

jq �
(

�

2ωc

)2
�

4π

[
(�ωc)2

(2πkB)2(T 2 − δT 2/4)

]1−α

×
∫ ∞

−∞
ω[e(�ω/2kB )(1/TR−1/TL) − e−(�ω/2kB )(1/TR−1/TL)]dω.

(26)

We now expand the exponential functions in the integrand in
powers of δT ,

[e(�ω/2kB )(1/TR−1/TL) − e−(�ω/2kB )(1/TR−1/TL)]

∼ δT

kBT 2
�ω + δT 3

�ω
6(kBT )2 + (�ω)2

24k3
BT 6

+ · · · , (27)

and perform the frequency integration with an upper limit
kBT /�. We immediately reach a form parallel to Eq. (21),

jq � kB

�2

ωc

(
�ωc

kBT

)1−2α [
c1δT + c3

δT 3

T 2
+ · · ·

]
, (28)

with the numeric factors c1 and c3. This result does not quantify
the importance of nonlinear effects, the ratio c3/c1. It only
points out that high-order conductances maintain the form of
the linear response term. A similar analysis can be performed
in the weak coupling limit, to confirm that Eq. (24) describes
high-order conductances.

The third principal result of this paper is thus that Eqs. (21)
and (24) portray the behavior of high-order conductances in
spatially symmetric systems, at weak and strong coupling,
respectively. It is significant to note that the thermal diode
effect is optimized in a certain region, 0.1 < α < 0.3; see
Fig. 4(b).

IV. SUMMARY

We considered the problem of thermal transport in the
nonequilibrium spin-boson model and showed that a NIBA-
based formula for the thermal conductance, justified in the
nonadiabatic limit (� < ωc), provides analytic results in
agreement with exact simulations [21] in the high tem-
perature limit T > TK . Away from equilibrium, we found
that the thermal diode effect, a nonlinear transport property,
shows up predominantly in the weak-intermediate interaction
regime, α = 0.1–0.3. Overall, the (nonequilibrium) current
characteristics as a function of α are similar to the linear
response limit.

We conclude by emphasizing the utility of the NIBA heat
current formula (15) in its T > TK regime of applicability:
(i) It is based on the Fermi golden rule, extensively investigated
in the context of electron transfer reactions [1,2]. This allows
us to adopt established expressions for the transition rates, to
obtain transport characteristics. (ii) The NIBA formula can be
used with minimal adjustments to handle other thermal baths
beyond the harmonic case, e.g., spin baths [33]. (iii) It is valid
beyond linear response, to provide the heat current in systems
far from equilibrium. (iv) Equation (15) can be extended
to simulate multistate junctions [11]; in such cases exact
simulations are impractical. Future work will be devoted to
time-dependent effects for addressing quantum heat pumping
problems [34–36]. It is also of interest to obtain closed
forms for the current cumulants [37], and understand how
the current noise scales with system-bath coupling far from
equilibrium.
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