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ABSTRACT: Understanding excitation and charge transfer in disordered media is a
significant challenge in chemistry, biophysics, and material science. We study two
experimentally relevant measures for carrier transfer in finite-size chains, a mean first-
passage time (MFPT) and the steady-state transfer time (SSTT). We discuss the
relationship between these measures and derive analytic formulas for 1D chains. We
exemplify the behavior of these time scales in different motifs: donor−bridge−acceptor
systems, biased chains, and alternating and stacked copolymers. We find that the MFPT and
the SSTT may administer different, complementary information on the system, jointly
reporting on molecular length and energetics. Under constraints such as fixed donor−
acceptor energy bias, we show that the MFPT and the SSTT are optimized (minimized)
under fundamentally different internal potential profiles. This study brings insights into the
behavior of the MFPT and the SSTT and suggests that it is beneficial to perform both
transient and steady-state measurements on a conducing network so as to gather a more
complete picture of its properties.

1. INTRODUCTION

Understanding charge- and energy-transfer processes in soft
and disordered materials such as thin films made from organic
polymers or large biological molecules is central to the
development of electronic and energy solar-harvesting
applications.1 To model such systems efficiently, a coarse-
grained model of the surrounding environment is often
assumed. In turn, this approach allows the application of
kinetic, Markovian master equations for following the
dynamics of averaged variables.
Mean first-passage quantities are useful for characterizing

stochastic processes. Specifically, the mean first-passage time
defines a time scale to visit a specified target (or a threshold
value) for the first time.2 This measure finds numerous
applications in physics, chemistry, and biology, for example, for
quantifying reaction rates, transmission of particles in channels,
molecular processes such as receptor binding and adhesion,
and cellular processes such as cell division.3 Here we focus on
(charge or energy) transfer processes in flexible molecular
systems and use the mean first-passage time to report on the
transfer process from a certain initial site to a final location.4

The capacity of molecules to transfer electric charge can be
measured in different setups. In transient absorption spectros-
copy experiments, an initial state is carefully prepared and
monitored in time; see, for example, refs 5−7. In contrast, in
electrochemical experiments, a molecule of interest is attached
to an electrode, and the rate of charge transfer from the
electrode to redox groups in the molecule is monitored; see,

for example, ref 8. Alternatively, in molecular conductance
experiments, a molecule links two voltage-biased electrodes, for
example, an STM tip and a conducting substrate, and the
molecule is characterized by its electrical conductance.9 To
thoroughly understand charge-transfer processes in a single
molecule or ensemble of molecules, it is critical to resolve the
connection between measured observables in such different
experiments. A somewhat related problem was recently
explored in ref 10, checking the relation between optoelec-
tronic properties of semiconductors deduced from either
pulsed excitation methods or steady-state measurements.
Several theoretical studies predicted a linear relationship

between the intramolecular charge-transfer rate in a donor−
bridge−acceptor system and the low bias conductance in a
metal−molecule−metal junction.11−15 Nevertheless, experi-
ments revealed a more complex behavior.8,16,17 For example,
in ref 8, the electrochemical rate constant and the molecular
conductance were examined in alkane chains and peptide
nucleic acid oligomers, generally manifesting nonlinear
correlations between the transfer rate and the conductance.
These deviations from linearity are rationalized by noting that
for the same molecule, transient, electrochemical, and
conductance measurements are performed at undoubtedly
different settings, considering ensemble versus single molecule,
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using different solvents, and experiencing different environ-
mental conditions. As a result, the energetics of the molecule
and its dephasing and relaxation processes are different in the
these distinct types of experiments.
In this work, we revisit the following basic question:

Considering carrier transfer processes in 1D hopping systems,
what is the relationship between transient measures and
steady-state observables? We leave aside the challenging,
practical problem discussed above, that in different exper-
imental settings the molecule and its local environment are
modified, and, for simplicity, we assume that the structures are
identical in the different types of experiments.
Using classical rate equations, we compare transient and

steady-state measures for the transfer process, namely, a mean
first-passage time (MFPT) and the inverse of the steady-state
rate, referred to as the steady-state transfer time (SSTT). On
the basis of these two measures, we study the roles of structural
motifs on carrier transfer in different networks, including linear
or branched chains and uniform, bridge-mediated, energy-
biased, single, and multicomponent networks. We derive a
simple, intuitive relationship between the two time scales, the
MFPT and the SSTT, and explain under what conditions they
agree. In general, we find that these measures scale differently
with system size and energy and that they can disclose distinct
properties of the system. We further discuss the enhancement
of the transfer speed by optimizing the energy profile of the
system, achieved, for example, by chemical modifications or
gating.

2. MODEL AND MEASURES
We study the problem of a random walk across a finite system.
The model includes n + 2 sites, with a donor D (site 0),
acceptor A (site n + 1), and n intermediate sites. We use the
chemistry notation of donor and acceptor to identify the edges
of the chain. In addition, the model includes a trap T attached
only to A; transitions from A to the trap are irreversible, with a
trapping rate constant ΓA. Variants of this model have been
adopted to describe the charge transfer and excitation energy
transport in polymers, biomolecules, and amorphous systems.
A model with multiple acceptors is discussed in the Supporting
Information. At this point, we do not specify the connectivity
or the energy profile of the system, to be described in
examples. Also, we do not include lossy processes within the
system, such as exciton recombination.
The Pauli master equation describes the time evolution of

site populations, pi, i = 0, 1, ..., n + 1

̇ =t tp Mp( ) ( ) (1)

with the vector of population p and rate constant matrix M.
Note that this system of equations does not include the
equation of motion for the trap, which fulfills ṗT = ΓApA. In
such a coarse-grained random walk model, the properties of
the environment, such as its temperature, determine the
hopping rates; to make a transition up (down) in energy, the
walker absorbs (dissipates) heat from (to) the surrounding
thermal bath. The differential equation (eq 1) is linear and
first-order and therefore can be readily solved. We particularly
mention that in many instances experiments of charge transfer
in DNA are well described by the Pauli rate equations; see, for
example, refs 18−23.
The success rate of a transfer process in a kinetic network

can be quantified using different measures, such as the transfer
time, yield, and flux. Before we introduce the different

observables, we present time-dependent and steady-state
experiments. In the first case, realized, for example, with
transient absorption spectroscopy, one prepares a well-defined
initial condition and follows the time evolution of the system
toward its long-time state. For example, in studies of charge
transfer in DNA, an excess charge is prepared on a donor site
using a laser excitation. Once injected into the DNA, the excess
charge migrates until it arrives at an acceptor molecule
attached to the DNA.5−7 Mathematically, transient dynamics is
revealed by solving the time-dependent, first-order differential
eq 1. The formal solution is p(t) = exp(Mt)p0, with the vector
of the initial condition p0.
Alternatively, one may study the same system, albeit in a

steady-state situation, by defining a boundary condition rather
than an initial condition, identifying a source and a sink
(possibly more than one). For example, the donor population
can be maintained fixed by continuously feeding in particles;
population leaves the acceptor at the same rate. In this
scenario, the relevant measure for the transfer process is the
flux of outgoing particles, from the acceptoroutside. As was
discussed in, for example, refs 11−15, in a donor−bridge−
acceptor configuration and under some simplifying assump-
tions, this steady-state setup can be furthermore related to the
low-voltage electrical conductance.
In what follows, we consider time-dependent and steady-

state settings, examine transfer measures, and discuss their
relationships. We emphasize that we focus here on systems that
include a single donor and a single acceptor and that so far we
do not consider losses within the network.

2.1. Mean First-Passage Time. The mean first-passage
time defines a time scale for a random event to occur for the
first time. A trapping time scale describes the mean time it
takes for population to leave the system, that is, to transfer
from the donor to the trap. Let us consider our model, with
n + 2 sites and a trap. From the conservation of population,
1 = ∑i=0

n+1 pi + pT. Here pT(t) is the trap population and ṗT(t) is
the instantaneous trapping rate. This quantity is normalized,
∫ 0
∞ ṗT(t) dt = 1; therefore, it represents the probably density

of trapping time, t. We can now define the mean trapping time,
referred to as the trapping mean first-passage time, by

∫τ ≡ ̇
∞

tp t t( ) dm
0 T (2)

See also ref 24. Because the probability of not having
transitioned to the trap is equal to the probability of being
in the other n + 2 sites of the system, ṗT(t) = −∑j=0

n+1 ṗj(t).
Integrating by parts, we get

∫∑

∑

τ =

=

=

+ ∞

=

+

p t t

r

( ) d
j

n

j

j

n

j

m
0

1

0

0

1

(3)

where the residence time on the jth site is defined as

∫≡ = [− ]
∞

−
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

r t tM p M pexp( ) dj
j

j
0 0

1
0

(4)

Note that we count rows starting from 0 to n + 1. Alternatively,
the MFPT can be calculated from the accumulated population
on the acceptor; the rate equation describing the kinetics of the
trap fulfills ṗT(t) = ΓApA(t); therefore
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∫τ = Γ
∞

tp t t( ) dm A
0 A (5)

Equations 3 and 5 are equivalent; computationally, the former
is more convenient. We emphasize that the MFPT, as well as
other observables considered below, are calculated without the
explicit consideration of the trap population.
Another method to calculate the MFPT is to replace the trap

and the donor states with a combined donor/trap state. The
steady state for this configuration gives the MFPT by

τ
= Γ p

1

m
A D/T (6)

where pD/T is the steady-state population of the combined
donor/trap state. This scheme allows the calculation of MFPT
for systems with a backflow from the trap state to the
acceptor.25 In the rest of the paper, we calculate the MFPT
based on eqs 3 and 4.
2.2. Mean-Transfer Time. Another measure that has been

commonly introduced in the literature is the average transfer
time to reach the acceptor, written as

∫
∫

τ ≡

∞

∞

tp t t

p t t

( ) d

( ) d
t

0 A

0 A (7)

Nevertheless, because ∫ ∫Γ = ̇ =
∞ ∞

p t t p t t( )d ( )d 1T0 A A 0
, eq 7

is identical to eq 5, and we conclude that the MFPT and the
mean-transfer time are in fact the same measure. Note that
these considerations hold even if the underlying dynamics
involves nonthermal effects or quantum effects comprising the
time evolution of coherences.
2.3. Steady-State Flux. In a steady-state experiment we

maintain the population of the donor state fixed, pD(t) = 1, and
measure the outgoing particle flux from the acceptor toward
the trap. In the long time limit, transient effects die out,
ṗ(t) = 0. The differential equation reduces to an algebraic one
for the population. There are different equivalent ways to
organize the algebraic equation for the population, as we
discuss in the Supporting Information, Section S1. Here we
solve

̃ =Mp vss (8)

where M̃ corresponds to the matrix M of eq 1 by replacing its
first row by (1 0 0 ...). The inhomogeneous column v has a
single nonzero value (unity) in its first element, v = (1 0 0 ...)T.
The first row of eq 8 thus stands for the condition pD

ss = 1, that
is, the donor-state population in steady state. We exemplify
these definitions in the Supporting Information (Section S1).
We solve eq 8 and obtain the steady-state population. The
steady-state flux is defined as

≡ Γk p p/ss A A
ss

D
ss

(9)

but we can omit the denominator, which was written here to
highlight the normalization with respect to the donor
occupation. The inverse of the flux defines a time scale

τ ≡ −kss ss
1

(10)

which we refer to as the “steady-state transfer time”.
2.4. On the Relation between the MFPT and the

Steady-State Flux. Because different protocols (transient and
steady state) may be used to interrogate the same system, it is

critical to resolve the relationship between the MFPT and the
SSTT. Do these measures necessarily convey the same
information? If not, when do these time scales agree? This
question will be discussed throughout the paper: We provide
examples in which the two measures, eqs 3 and 10, converge
and situations in which they report on different properties of
the system.
Intuitively, as was for example explained in refs 26 and 27,

the MFPT and the SSTT agree when the dynamics is
dominated by a single decaying exponent. Considering the
eigenvalues of the kinetic matrix M; this situation manifests
itself when |(λ1 − λ0)/λ0| ≫ 1. Here λ0 is the smallest (in
magnitude) eigenvalue of M, and λ1 is the next eigenvalue in
order of increasing magnitude. Whereas mathematically, this
condition is clear, its physical implications are not transparent.
What physical picture can assist us in understanding the

agreement between or the divergence of these two measures?
As we now show, we can derive a simple relationship between
these two measures with very little effort. In the steady state,
the outgoing flux is equal to the incoming flux, and thus we
write down the following relation (see the Supporting
Information)

= − = −k kMp p( 0 0 ...)ss
ss

T
ss 0 (11)

Here pss is the vector of population in the steady state. The
second equality in eq 11 relies on the initial condition assumed
in the transient problem (only the donor site is occupied), and
we therefore replaced the unit vector (1 0 0 ...)T by the vector
of initial condition, p0. We now use eq 4 and find that

= kp rss
ss (12)

On the left-hand side we have a vector of steady-state
population. On the right-hand side, r is the vector of residence
times. Summing up the rows and using eq 3, where we identify
the sum of the residence times by the MFPT, we get

∑ τ[ ] =
=

+

p k
j

n

j
0

1
ss

ss m
(13)

or

τ τ=p /total
ss

m ss (14)

Here we define the total population as ptotal
ss , including donor, n

intermediate sites, and acceptor. Equation 14 is deceitfully
simple yet powerful, and it is one of the central results of our
work. This relation tells us that the transient measure, which is
the MFPT, and the steady-state transfer time agree when the
total population in the steady-state problem sums up to 1. Of
course, because we set the steady-state boundary condition by
fixing pD

ss = 1, the total population in the steady state is always
greater than 1, and the two measures always disagree to some
extent. However, we can now predict based on physical
intuition whether this deviation is large or small.
The first critical observation from eq 14 is that when we

measure a certain system with transient and steady-state
methods, we should always find that τm > τss. If we violate this
inequality, then we obviously suffer from a critical problem; for
example, the physical structure is not the same in the two
experiments, possibly due to modifications to the surrounding
environment.
Let us now consider a three-site (D,1,A) donor−bridge−

acceptor model. The total occupation of the system is
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ptotal
ss = pD

ss + p1
ss + pA

ss, and obviously, it is >1 (remember that
pD
ss = 1). However, if the bridge energy is set high relative to the
thermal energy, then we expect that p1

ss + pA
ss ≪ 1, and thus τm

≈ τss. This prediction is verified in Section 3.3. In contrast, if
the energy profile is uniform, then we expect comparable
occupations, p1

ss, pA
ss ≈ pD

ss, and thus the two time scales diverge.
Specifically, for a uniform system with n sites, we estimate
equal population all through, and thus τm ≈ nτss. We derive this
result in a rigorous manner in Section 3.3. Furthermore, the
two time scales should significantly deviate under a forward
bias (when the donor site is placed above the acceptor), but
they would agree under a reversed bias, as we show in Section
3.4.
It is important to note that eq 14 is quite general: It does not

rely on the details of the network; that is, the model may
include transitions beyond nearest neighbors, loops, and so on.

3. ONE-DIMENSIONAL CHAINS WITH ARBITRARY
RATES: ANALYTIC RESULTS AND EXAMPLES

In this section, we derive analytical expressions for the MFPT
and the SSTT in a nearest-neighbor 1D model. We then
exemplify these measures in problems that are interesting in
the context of charge and excitation transfer in molecular
chains and junctions such as organic polymers and DNA.
The model includes a single donor, n intermediate sites on a

chain, an acceptor, and a trap. We calculate the MFPT and the
SSTT, discuss their relationship, and exemplify that they may
convey distinct, complementary information. Our analytical
expression for the MFPT agrees with a previous work.4

Nevertheless, our simple derivation and the associated analysis
of the SSTT provide new physical insights. The population
equations of motion satisfy (i = 1, 2, ..., n)

̇ = − +

̇ = − + + +

̇ = − + Γ +

+ − + −

+ + +

÷ ◊÷÷ ’ ÷÷÷÷

÷ ◊÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷ ÷◊÷

’ ÷÷÷ ÷ ◊÷÷÷÷÷÷÷÷

p t k p t k p t

p t k k p t k p t k p t

p t k p t k p t

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i i i i i

n n A n n n

0 1 0 0 1

1 1 1 1

1 1 1 (15)

with
’÷÷
ki (

÷◊÷
ki) as the rate constant to make a transition toward

site i, which is at the left (right) of the current site. For
example, assuming an equilibrium bath at temperature T, the
rate constants satisfy the detailed balance relation,

= − −+ +

÷ ◊÷÷÷÷÷÷÷÷
’ ÷÷÷ ek

k
E E T( )/i

i

i i1 1 ; we set the Boltzmann constant as kB ≡

1. Nevertheless, our general results in this section do not rely
on this particular choice for the rates.
3.1. MFPT. The rate matrix (eq 15) of dimension (n + 2) ×

(n + 2) is tridiagonal (all missing entries are zero)

=

−

− −

− −

− −

− − Γ

−

− +

+

∏

∏

∏

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

÷ ◊÷÷ ’ ÷÷÷÷

÷ ◊÷÷ ’ ÷÷÷÷ ÷ ◊÷÷ ’ ÷÷÷

÷ ◊÷÷÷ ’ ÷÷÷ ÷ ◊÷÷÷

÷ ◊÷÷÷ ’ ÷÷÷÷÷÷÷÷÷

’ ÷÷÷÷÷÷÷÷÷ ÷ ◊÷÷÷÷÷÷÷÷ ’ ÷÷÷

÷ ◊÷÷÷÷÷÷÷÷ ’ ÷÷÷

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

k k

k k k k

k k k

k k

k k k

k k

M

0

0

n

n n n

n n

1 0

1 0 2 1

2 1 3

3 1

1 1

1 A

(16)

Our objective is to find the residence times using eq 4,
−M(r) = p0. Because M is tridiagonal, by following the
Thomas algorithm,28 we reduce the above equation to

The transfer times rj are obtained by progressing recursively
from the last row to the first row

=

+

+

+

+

Γ

+
+

∂

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

÷ ◊÷÷
’ ÷÷÷÷

÷ ◊÷÷÷
’ ÷÷÷

÷ ◊÷÷
’ ÷÷÷÷

÷ ◊÷÷÷÷÷÷÷÷
’ ÷÷÷

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

k
k r

k
k r

k
k r

k
k r

r

1
(1 )

1
(1 )

1
(1 )

1
(1 )

1
n

n n

1
0 1

2
1 2

3
2 3

1
1

A (18)

or explicitly

=

+ + +

+ + +

+ + +

+
Γ

Γ

+ +

∂

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

÷ ◊÷÷
i

k

jjjjjjj

’ ÷÷÷÷
÷ ◊÷÷÷

i

k

jjjjjj

’ ÷÷÷
÷ ◊÷÷

y

{

zzzzzz
y

{

zzzzzzz

÷ ◊÷÷÷
i

k

jjjjjjj

’ ÷÷÷
÷ ◊÷÷

i

k

jjjjjj

’ ÷÷÷÷
÷ ◊÷÷

y

{

zzzzzz
y

{

zzzzzzz

÷ ◊÷÷
i

k

jjjjjjj

’ ÷÷÷÷
÷ ◊÷÷

i

k

jjjjjj

’ ÷÷÷
÷ ◊÷÷

y

{

zzzzzz
y

{

zzzzzzz

÷ ◊÷÷÷÷÷÷÷÷
’ ÷÷÷

÷ ◊÷÷÷÷÷÷÷÷

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

r

1
1 1 ...

1
1 1 ...

1
1 1 ...

1

1
n

n

n

1

0

2

1

3

2

1

3

2

4

3

2

4

3

5

1 1 A

A (19)

The recursive form has a clear interpretation: +
−÷ ◊÷÷÷÷÷÷÷

ki 1
1
is the

residence time on site i before moving forward once;

+ +
’÷÷ ÷ ◊÷÷÷÷÷÷÷

r k k/i i i1 1 is the contribution to the ith residence time from
a particle that jumps to site i from i + 1 before moving forward
again. The mean first-passage time is the sum of the residence
times, given by
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τ = +
+

+
+

÷ ◊÷÷
i

k

jjjjjjj

’ ÷÷÷÷ ÷ ◊÷÷
÷ ◊÷÷÷

i

k

jjjjjj

’ ÷÷÷ ÷ ◊÷÷÷
÷ ◊÷÷

y

{

zzzzzz
y

{

zzzzzzzk

k k

k

k k

k

1
1 1 (...)m

1

0 1

2

1 2

3 (20)

The recurrence relation for the residence time can also be
seen from the flux condition: The population must leave to the
right one more time than it enters from the left,

− =− −
÷◊÷ ’ ÷÷÷÷÷÷÷÷
k r k r 1i i i i1 1 .

3.2. SSTT. Following the discussion of Section 2.3, our
objective is to solve the algebraic equation M̃pss = p0. We
manage to reduce it as follows

H e r e = +
÷ ◊÷÷÷ ’ ÷÷÷÷

q k k(1) 2 0 , = + +
÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷

q k k k k k k(2) 2 3 3 0 0 1 ,

= + + +
’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷ ÷ ◊÷÷ ’ ÷÷÷÷ ÷ ◊÷÷ ’ ÷÷÷÷ ’ ÷÷÷

q k k k k k k k k k k k k(3) 2 0 1 4 2 3 4 3 0 4 0 1 , and so on. To
generate these combinations, we define the sequence s(x)

={ }+ −
÷ ◊÷÷÷ ÷ ◊÷÷÷÷÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷÷÷÷÷÷
k k k k k, ..., , , , ...,x x2 1 0 1 1 ; q(x) is a sum of x + 1

products of nearest-neighbor elements in the sequence s(x).

For convenience, we use the notation = Γ+
÷ ◊÷÷÷÷÷÷÷÷
kn 2 A .

The steady-state flux is given by ΓApn+1, which can be found
directly from the last row of eq 21. The other elements of the
column vector on the right-hand side of eq 21 are the steady-
state populations for chains that end with the site
corresponding to that row.
In what follows, we exemplify our results for the MFPT and

SSTT on several models; see Figures 1 and 2: (i) donor−
bridge−acceptor configuration, where the bridge’s energy is set
constant and higher than the D and A levels; (ii) biased chain,
representing a system under a constant electric field; and (iii)
copolymer motifs, either alternating or stacked, representing

charge transport in quasi-1D chains such as motion along the
pi stacking in a double-stranded DNA. Our results in these
three cases assume that transitions are induced by a heat bath
at thermal equilibrium; therefore, we enforce the detailed
balance relation. We work with dimensionless energy
parameters, scaled by temperature.

3.3. Example I: Donor−Bridge−Acceptor System. We
consider here the ubiquitous donor−bridge−acceptor setup.
We assume that bridge energies are uniform and that they are
higher than both the donor and the acceptor levels; see Figure
1a. The MFPT is calculated from eq 18. Enforcing detailed

balance, we set = −Δ÷ ◊÷÷
k e1

B, = −Δ’ ÷÷÷
k en

B, and all other =
÷◊÷ ’ ÷÷
k k, 1i i ;

n is the number of bridge sites, and ΔB is the dimensionless
energy gap between the donor/acceptor and the bridge (scaled
by the temperature). The residence times are given by

=
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+
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( 1)e

e
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( 1)
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( 2)

e
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1
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A
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A

A

A

B

B

B

B

B

(22)

Summing them up while setting ΓA = 1 for simplicity, we get

τ = + + + + +−Δ Δn n n ne ( 1)e
1
2

1
2

2m
2B B

(23)

When ΔB = 0, this formula reduces to known results
τm = (n + 2)(n + 3)/2; see ref 24. In the opposite limit,
when ΔB is large, the linear term dominates eq 23, and it
approaches the scaling τm ∝ (n + 1)eΔB.

Figure 1. One-dimensional models: (a) Donor−bridge−acceptor
chain with an energy gap (scaled by the temperature) ΔB. (b) Biased
system, exemplifying here a potential bias ΔF toward the acceptor.

Figure 2. Examples of copolymer motifs. (A1,A2) Alternating chains
with D connected to either the high- or low-energy monomers.
(S1,S2) Stacked chains with D connected to either the high- or low-
energy monomer. The D (A) sites are placed in resonance with the
first (last) sites. There are even numbers of sites in the system in the
presented examples. In the odd case, an additional site is added right
before the acceptor site.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.8b08874
J. Phys. Chem. C 2019, 123, 1021−1031

1025

http://dx.doi.org/10.1021/acs.jpcc.8b08874


The steady-state transfer time is derived from the last row of
eq 21

= + +
∏

∏

= + + +

− =

=
+

Δ Δ

÷ ◊÷÷
’ ÷÷
÷◊÷k

k

k

k

1
...

e ... e 1

i
n

i

i
n

i
ss

1

1

0

1
1

B B (24)

resulting in

τ = + +Δn( 1)e 1ss
B (25)

This measure is linear in n for all ΔB. We therefore conclude
that the MFPT and the SSTT agree so long as ΔB ≫ 1. In this
case, the bridge population is small, which agrees with our
analysis of Section 2.4.
In Figure 3, we display the MFPT and the SSTT while

increasing the system size and the bridge height ΔB. The SSTT
scales linearly with n, whereas the MFPT shows a transition
from quadratic to linear scaling with the increase in ΔB.
3.4. Example II: Biased Chain. We consider now a biased

chain, as illustrated in Figure 1b. The system can be biased in
opposite polarities, such that energies decrease or increase
toward the acceptor. In what follows, we consider both cases,
which we refer to as negative (decreasing) and positive
(increasing) potential bias.
Negative Potential Bias, ED > EA. . The donor energy is

placed above the acceptor, and the total gap is denoted by
ΔF ≡ |ED − EA|. Recall that the chain comprises the donor,
acceptor, and n intermediate states. For a nonincreasing
potential bias, we get from eq 20 the MFPT

∑ ∑ ∑τ = + + + +

+ +
= =

−
=

− −
’÷÷ ’ ÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷

’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷
n k k k k k k

k k k

( 2) ( ) ( )

... ( ... )

i

n

i
i

n

i i
i

n

i i i

n

m
0 1

1
2

1 2

0 1 (26)

We now specifically assume a linear, constant gradient profile

such that ⃖ = −Δ +k e n/( 1)F and ⃗ =k 1. Using the analytical results
of Sections 3.1 and 3.2, we find the MFPT

τ = + + + +

+ − + +

−Δ + − Δ +

− Δ + −Δ

n n n

n

( 2) ( 1)e e

( 1)e ... e

n n

n
m

/( 1) 2 /( 1)

3 /( 1)F

F F

F (27)

and the SSTT

τ = + + + +−Δ + − Δ + −Δ1 e e ... en n
ss

/( 1) 2 /( 1)F F F (28)

The MFPT is dominated by the (n + 2) term, whereas the
SSTT is dominated by a constant (explicitly, by the ΓA

−1 rate

constant) and the −Δ +e n/( 1)F term. Therefore, by performing
both transient and steady-state measurements, one can
experimentally determine both the number of sites n and the
potential drop ΔF.

Positive Potential Bias, ED < EA. . When the potential
energy linearly increases in the direction of the trap, the rate

constants satisfy ⃗ ⃖= =−Δ +k ke , 1n/( 1)F . Note that we define
the gap by its magnitude, ΔF = |EA − ED|. The MFPT and the
SSTT are

τ = + + + + +

+

Δ + Δ +

Δ

n n1 ( 2)e ( 1)e

... 2e

n n
m

/( 1) 2 /( 1)F F

F (29)

and

τ = + + +Δ + Δ + Δe e ... 2en n
ss

/( 1) 2 /( 1)F F F (30)

As ΔF grows, both mean first-passage time and steady-state
transfer time approach 2eΔF. This agreement is expected: When
the forward energy gap is large, the steady-state populations on
intermediate sites become small, and the time scales agree.

3.5. Example III: Copolymer Motifs. We consider
polymers with two monomers, B and b of high energy (EB)
and low energy (Eb), with the scaled energy difference
ΔP = EB − Eb. The polymer may be alternating or stacked,
for example, with sequences BbBbBb or BBBbbb, respectively.
For simplicity, the donor (acceptor) is placed in resonance
with the first (last) site. Examples of examined copolymers are
presented in Figure 2. In what follows, we study the
dependence of the MFPT and the SSTT on n, the number
of intermediate sites, the parity of n, and ΔP, the energy
difference between monomers. Trends also depend on whether

Figure 3. Dependence of (a) steady-state transfer time and (b) mean first-passage time on n for donor−bridge−acceptor systems.
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the donor state is coupled to the high- or low-energy
monomer. Our results are organized in Tables 1 and 2.
3.5.1. Alternating Polymers. Focusing first on the MFPT,

we observe the following (see Table 1): (i) Polymers that end
on the high-energy monomer (sequences A2 and A3, such as
DbBbBbBA or DBbBbBA, respectively) show the functional
form eΔP but not e−ΔP. This is because the residence times for
low-energy monomers increase with eΔP, whereas the residence
time of the B monomer here does not depend on ΔP. In
contrast, polymers that end on the lower strand (DBbBbBbA
or DbBbBbA) have both eΔP and e−ΔP terms. In this case, high-
energy monomers have residence times that depend on e−ΔP,
whereas low-energy monomers contribute the residence time
eΔP. (ii) For all four types of alternating chains, the MFPT
scales as n2eΔP. In contrast, the SSTT shows two different
scaling laws, depending on whether the donor is in resonance
with B or b. In the former case, τss ∝ n, whereas in the latter
case, the barrier energy shows up and τss ∝ neΔP.
3.5.2. Stacked Polymers. In this model, the copolymer is

made of two halves of different content, which could
correspond, for example, to different base pairings in DNA
molecules; see refs 29 and 30. In this case, all rate constants
⃖ ⃗k k, are set equal to 1, besides a single rate where the
monomers switch. For the mean first-passage time, this splits
the sum of residence times into two groups: residence times
corresponding to sites after the change in energy, which do not
depend on ΔP, and times corresponding to sites before the
change in energy, which do manifest a ΔP dependence. The
results are quite natural; see Table 2: If we switch from high-
energy sites toward low-energy sites as we move toward the
acceptor, then we do not pay an energetic price and
τm ∝ n2, τss ∝ n. In the opposite case, these times are
increased by the eΔP factor.
Overall, we find that: (i) The MFTT and SSTT of

alternating configurations are typically longer than those for
a stacked one. It is interesting to note that higher resistances
were indeed measured for alternating DNA configurations,

relative to stacked sequences,29,30 in line with our calculations.
Nevertheless, because coherent quantum effects are not
included in this work, this agreement may be incidental. (ii)
If n and ΔP are large enough such that only the leading term
matters, then it is generally possible to determine both ΔP and
n by jointly studying the steady-state lifetime and the mean
first-passage time, assuming that we know the nature of the
polymer (from the configurations S1−S4 and A1−A4) but not
necessarily its length or energetics. First, we note that
τm/τss ∝ n in all cases, besides A1 and A3. In these special
cases, the dominating term of steady-state lifetime is itself
proportional to n. Also, all copolymers besides S1 and S3, show

Δn e1
4

2 P as the leading term in the mean first-passage time. In all

of these configurations, ΔP can be readily determined once we
find n.

4. OPTIMIZATION OF THE ENERGY PROFILE

Achieving a fast rate of charge transport through molecules is
desirable for many applications. Experiments manifest an
enhancement of hole transport in DNA by modifying the
injection site, the sequence, and the chemical environment.
These modifications alter the molecular energy profile and thus
the driving force for charge migration.31−33

In this section, we ask the following question: Assuming
fixed donor and acceptor site energies, what is the optimal
energy profile for the intermediate n sites so as to minimize the
transfer time and thus enhance the speed of transfer? We
explore this question analytically and numerically for positive
and negative biases. Central observations are that the MFPT
and the SSTT are minimized under different principles and
that the profile generally deviates from linearity and
monotonicity. In Figure 4, we exemplify optimized setups
under large bias, derived in the following discussion.

4.1. Negative Bias, ED > EA. 4.1.1. MFPT. Let us first
consider the negative bias case, with a total energy gap
ΔF = |ED − EA| between the donor and acceptor. As a

Table 1. Alternating Polymer Motifs and Characteristic Transfer Times (Leading Terms in Bold)

sequence MFPT SSTT

A1. (even)
D(Bb)mA − + + + + +Δ −Δi

k
jjj y

{
zzzn n n ne

1
4
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( 2)e
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2 12 2P P n + 2e−ΔP
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k
jjj y
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zzzn n ne
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2 2P n + 2
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k
jjj y

{
zzzn n n ne

1
4

n
5
4

( 1)e
1
4

1
2

21
4

2 2P P eΔP(n − 1) + 3
m = (n − 1)/2

Table 2. Stacked Polymer Motifs and Characteristic Transfer Times (Leading Terms in Bold)

sequence MFPT SSTT

S1. (even)
DBmbmA + + + + + −Δi

k
jjj y

{
zzzn n n1

4
n
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4

1 e2 2 P + + + −Δi
k
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zzzn1

2
n 1
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e P
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constraint, we demand that the energies of the sequence of n
internal sites are nonincreasing. We assign a (temperature
scaled) energy Ei to site i. The transition rate constant from

site i to i − 1 is set at =−
− −

’ ÷÷÷÷÷÷÷÷
k ei

E E
1

i i 1 if Ei < Ei−1 and 1
otherwise. For simplicity, the trapping rate constant is taken as
ΓA = 1. Because the energies do not increase going toward the

trap, all =
÷◊÷
k 1i , and the MFPT follows eq 26. The overall

energy gap satisfies the constraint

∏ =
=

−Δ’÷÷
k e

i

n

i
0

F

(31)

The optimal rates in eq 26 fulfill the constraint and n + 1
equations of the form

τ

λ

∂

∂
= + + + + +

+

=

− + − − − + + +

− +

− +

’÷÷
’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷

’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷

’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷÷÷÷÷÷ ’ ÷÷÷

k
k k k k k k k k

k k k k k

k k k k k

1

... ... ...

... ...

i
i i i i i i i i

i i n

i i n

m
1 1 2 1 1 1 1 2

0 1 1 1

0 1 1 1

(32)

where the constant λ is the Lagrange multiplier; =
’÷÷
k 0j if j < 0.

As an example, let us consider the case with two intermediate
sites, n = 2. The MFPT is

τ = + + + + + +
’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷
k k k k k k k k k k4m 0 1 2 0 1 1 2 0 1 2 (33)

and the following four equations should be jointly solved

λ+ + =
’ ÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷
k k k k k1 1 1 2 1 2 (34a)

λ+ + + =
’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷÷
k k k k k k1 0 2 0 2 0 2 (34b)

λ+ + =
’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷
k k k k k1 1 0 1 0 1 (34c)

= −Δ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷
k k k e0 1 2

F (34d)

From symmetry, note that the first and last transition rates are

identical, =
’ ÷÷÷÷ ’ ÷÷÷÷
k k2 0 . In general, because eq 32 is symmetric with

respect to replacing each
’÷÷
ki with −

’ ÷÷÷÷÷÷÷÷
kn i , pairs of rate constants of

equal distance from the first and last sites will be identical. For
n = 2, the minimization problem involves solving a third-
degree polynomial in λ

λ λ λ λ= − + − Δ0 2 e F (35)

where

λ λ
= =

−
=

’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷
k k k

1
1

,
1

0 2 1
(36)

We can also organize eq 35 as x(x − 1)2 = eΔF with λ=x .
As expected, when ΔF becomes large, x grows and approaches
x ≈ eΔF/3, which corresponds to constant spacing (linear
profile). Optimization of the model with n intermediate sites
requires solving a similar n + 1-degree polynomial.
The analytic calculation above constrains the energies to be

nonincreasing. This constraint is not enforced in simulations
that, in fact, reveal situations in which the transfer times are
minimized with nonmonotonic profiles. In Figures 5 and 6 we
demonstrate such calculations using gradient descent. We find
that when n is small and ΔF is large, starting from the D, the
energies descend slowly (small local bias), then more quickly
toward the center (large local bias), and again slowly at the end
of the chain. In contrast, when n is large and ΔF small, the first
internal site is placed above the donor state. The rest of the
sites descend linearly, reaching below the acceptor state; see
Figure 6a,b. This result can be rationalized as follows: The
system pays the cost of a large energy jump in the first
transition (slow-down of transfer), yet this early barrier
prevents the carrier from going backward toward the donor
from the internal sites. Nevertheless, if we force the internal
sites to take values only in between the donor and acceptor
levels, then we obtain profiles that are similar to the small-n
large-ΔF case.
Nonmonotonic internal profiles allow fast transfer when the

external bias ΔF is small relative to the temperature. In such
low-field cases, the levels organize to create a large internal
field, opposing thermal fluctuations and facilitating fast

Figure 4. Illustrations of energy profiles that minimize the (a,b)
MFPT and (c,d) SSTT under forward or reversed biases. The energy
gap between the D and A sites is fixed. The position of the
intermediate levels is determined by minimizing the transfer time.
Under low bias (not shown), the energy profile minimizing the MFPT
is nonmonotonic, and it generates an internal strong field, as we show
in Figures 6 and 8

Figure 5. Simulations of the mean first-passage time for configurations with two internal sites (D, 1, 2, A) for negative bias, ED > EA. As ΔF

increases, the optimal configuration (minimum MFPT) approaches the profile Δ Δ( ),2
3 F

1
3 F .
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transport. This principle could be used in the design of
biomolecules that support fast charge migration.33

4.1.2. SSTT. Continuing with the same model, with a
nonincreasing profile, we turn to the steady-state transfer time

∏τ = + + + +
’ ÷÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷÷ ’ ÷÷÷÷ ’ ÷÷
k k k k k k k...

n

iss 0 0 1 0 1 2
0 (37)

This expression is minimized when = −Δ’ ÷÷÷÷
k e0

F, =
’÷÷
k 1i for i ≠ 0,

resulting in the minimum steady-state transfer time of
(n + 1)e−ΔF. In other words, the fastest process occurs when
all of the internal sites are aligned with the acceptor; that is, the
energy jump occurs immediately, from the donor to the first
site, n = 1.
4.2. Positive Bias, ED < EA. 4.2.1. MFPT. We now consider

a low-energy donor, n nondecreasing energy levels, and a high-
energy acceptor site. We define the gap as ΔF = |ED − EA|. This
arrangement implies that ⃖ =k 1, whereas the forward rates are
to be optimized. The MFPT is
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(38)

For simplicity, taking ΓA = 1, we get

τ = + + + + +

+ + +
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(39)

Minimizing the MFPT subjected to the constraint

∏ ==
+ −Δ÷◊÷

k ei
n

i1
1 F, the equations have no convenient symmetries.

For example, n = 1 yields

τ = + + +÷ ◊÷÷ ÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷
k k k k

1
1 2 2

m
1 2 1 2 (40)

Whereas this equation can be readily minimized with the
constraint, we proceed with the general formalism of Lagrange
multipliers and solve the system

λ− − =÷ ◊÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷
÷ ◊÷÷

k k k
k

1 2

1
2

1
2

2

2
(41a)

λ− − =÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷
÷ ◊÷÷

k k k
k

2 2

2
2

1 2
2 1

(41b)

= −Δ÷ ◊÷÷ ÷ ◊÷÷÷
k k e1 2

F (41c)

This problem can be solved by noting that

λ− − = = − −÷ ◊÷÷ ÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷
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1 2
2

1
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2
2

(42)

which implies that =
÷ ◊÷÷÷ ÷ ◊÷÷
k k22 1 , or explicitly

= =− −Δ −Δ÷ ◊÷÷ ÷ ◊÷÷÷
k ke , e1

1/2( ln 2 )
2

1/2(ln 2 )F F (43)

Figures 7 and 8 present simulation results, where we allowed
the internal potential profile to become nonmonotonic (unlike
the analytic derivation). We find that for large n and large ΔF,
the internal sites cluster at a level slightly above the midgap
between the donor and acceptor. In contrast, for very small ΔF,

Figure 6. Negative bias, ED > EA. Energy profile obtained numerically
using gradient descent by minimizing the MFPT for systems with
eight internal sites (D, 1, ..., 8, A).

Figure 7. Simulations of the mean first-passage time for a two-state system with ED < EA. As the gap ΔF increases, the optimal configuration is of
two states placed together at around ΔF/2.
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the energy profile first increases, thus artificially creating a large
internal field, which facilities fast transfer. In fact, when ΔF is
small, the results for positive and negative biases are very
similar; compare Figures 6a and 8a.
4.2.2. SSTT. We calculate the SSTT using eq 21, now

assuming a nondecreasing profile

∏τ = + + +
− −

=

+ −
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
÷ ◊÷÷ ÷ ◊÷÷ ÷ ◊÷÷÷ ÷◊÷ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
k k k k( ) ...

i

n

iss 1
1

1 2
1

1

1 1

(44)

The minimum MFPT, subject to the constraint ∏i=1
n+1 = e−ΔF,

can be intuitively obtained: Each term in eq 44 is greater than
or equal to the preceding term. Therefore, τss is minimized

once we take =+
−Δ÷ ◊÷÷÷÷÷÷÷÷

k en 1
F and =

÷◊÷
k 1i for all i ≠ n + 1. This

setup is illustrated in Figure 4d: Besides the last site, all sites
align with the donor state.
4.3. Principles for Optimization of Transfer Time.

Given fixed donor and acceptor site energies, what is the
optimal energy level profile for the intermediate sites (one that
would support the fastest transport)? It is fascinating to note
that the answer dramatically differs for the different measures.
On the basis of the analytical results and simulations of
Sections 4.1 and 4.2, we organize the following guidelines:
(i) The MFPT is minimized by prohibiting homecoming to

the donor site. For a negative bias problem, ED > EA, a linearly
decaying profile minimizes the MFPT when the donor−
acceptor gap is large. However, when the gap is small, an
internal bias develops, suppressing the restoration of the donor
population; see Figure 6. Similarly, at small positive bias
ED ≲ EA, an internal negative profile develops, assisting
particles in sliding forward; see Figure 8b. When EA ≫ ED, the
optimal profile is flat about half way between D and A. In this
case, energetically costly jumps occur at the boundaries, but
the particle diffuses without barriers through the bulk of the
system.

(ii) The SSTT is minimized when populations along the
system are high. The rationale here is that kss is proportional to
the acceptor’s population, and thus high occupations
throughout all sites carry on to a high population at the
acceptor site. Thus when ED > EA, highest occupations are
achieved when all internal sites are aligned with the acceptor;
that is, the energy jump occurs immediately, from the donor to
the first site, n = 1. Along the same principle, when ED < EA, we
minimize the steady state transfer time when all sites align with
the donor site, maintaining a high population throughout.

5. SUMMARY
Using kinetic equations, we studied particle transfer in 1D
systems with different motifs: linear, branched, uniform,
biased, homogeneous, and multicomponent systems. The
central results of our work are as follows: (i) We derived an
intuitive relationship between the MFPT and the SSTT, eq 14.
(ii) We obtained closed-form expressions for the MFPT and
the SSTT in nearest-neighbor 1D chains. (iii) We exemplified
our results on experimentally relevant setups, such as donor−
bridge−acceptor systems, biased chains, and stacked and
alternating copolymers and discussed the physical information
that can be gained from the MFPT and the SSTT. (iv) We
minimized the transit time through chains by optimizing the
energy profile. Here we found that the MFPT and the SSTT
were minimized under fundamentally different design rules.
Most strikingly, under shallow external potentials of the order
of the thermal energy, ΔF ≤ 1, the system achieved fast transit
time if the levels were set so as to create a strong internal field.
This work clarifies on the relationship between transient and

steady-state measures in classical kinetic networks. This
incoherent hopping dynamics can also emerge in quantum
dissipative systems under several assumptions such as weak
system-bath coupling, Markovian baths, and fast decoherence
rates. It is worthwhile to mention studies of the MFPT in
complex scale-invariant media34 and in the context of
enzymatic chemical reactions in biochemistry.35,36 Never-
theless, in these works, the networks included loops, a motif
that was not investigated in the present study.
Beyond the analysis of the MFPT, a rigorous general

machinery, as described in ref 37, provides the probability
distribution function of passage time, which contains
information on higher cumulants. However, because our
focus has been on developing a relationship between the
SSTT and the MFPT, we elected to use more elementary tools.
It is also interesting to consider extensions of this work,

particularly the enhancement of the transfer speed, to systems
under thermal gradients.38 The analysis of transfer processes in
networks beyond 1D and the role of quantum coherent effects
in corresponding quantum systems39 will be the focus of future
work.
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