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a b s t r a c t

We present our in-house quantum transport package, ProbeZT. This program provides linear response
coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular
junctions in which electrons interact with the surrounding thermal environment. Calculations are per-
formedbased on the Büttiker probemethod,which introduces decoherence, energy exchange anddissipa-
tion effects phenomenologically using virtual electrode terminals called probes. The program can realize
different types of probes, each introducing various environmental effects, including elastic and inelastic
scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian,
allowing the study of different geometries beyond simple one-dimensional wires. Applications of the
program to study the thermoelectric performance of molecular junctions are illustrated. The program
also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based
on a tight-binding (ladder) description of the junction.
Program summary
Program Title: ProbeZT
Program Files doi: http://dx.doi.org/10.17632/cvnp3kmcc6.1
Licensing provisions:GPLv3
Programming language:MATLAB
Nature of problem:Quantum transport in molecular electronic systems, covering coherent and incoherent
behavior.
Solution method: Implementation of environmental effects using Büttiker probes, resulting in coupled
linear equations solved by matrix inversion.
Additional comments including restrictions and unusual features: Voltage and voltage–temperature probe
simulations can only be performed in the linear response regime (low voltage bias).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Studies of charge transport in metal–molecule–metal junc-
tions contribute to fundamental understanding of many-body
phenomena at the nanoscale, and to the rational design of molec-
ular electronic devices [1]. Among the molecular elements com-
monly investigated we recount short saturated and unsaturated
organic molecules [2], conducting polymers, biomolecules such
as DNA [3,4] and polypeptides [5], single-molecule magnets [6],
and self-assembled organic monolayers [7,8]. Beyond the electri-
cal conductance, measurements of the thermopower are useful

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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not only in identifying structures with promising thermoelectric
properties, but also in revealing information on charge transport
characteristics which may be obfuscated in conductance measure-
ments [9–12].

An intriguing aspect of molecular conductance is the observa-
tion of the confluence of different transportmechanisms: quantum
coherent, semiclassical, and even fully classical. Specifically, by
increasing molecular length, temperature, and by modifying the
environment, the electrical conductance manifests the crossover
from a fully quantum coherent electronic transmission (deep
tunneling or ballistic-resonant quantum transport) to thermally-
assisted hopping between localized sites, and even classical
diffusion [1], see for example studies onDNAmolecules [13,14]. In-
termediate quantum coherent–incoherent transport phenomena
can also be observed in specific DNA sequences [15,16].

From the theoretical–computational point of view, the crossover
between coherent and incoherent transport behavior evinces on
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the interaction of conducting electrons with other degrees of
freedom, electrons, nuclei, solvent, local spins, etc. How do we
incorporate such many-body effects in transport calculations? The
Landauer approach [17], a prominent technique for simulating
molecular transport junctions, does not account for incoherent
effects, and thus is unsuitable to describe transport in ‘flexible’
systems. On the other hand, methods which provide a first-
principle microscopic description of electron-vibration interac-
tions are computationally expensive, and therefore limited to
simulate small systems, see e.g. [18–23].

In recent years the so-called Landauer–Büttiker probe (LBP)
technique [24,25] has been applied to address this shortfall and in-
vestigate electronic conduction in organic and bio molecular junc-
tions [26–33]. The LBP method was originally introduced to model
decoherence effects inmesoscopic systems. It capturesmany-body
scattering effects in a phenomenological manner, by introducing
‘‘probes’’ into the noninteracting Hamiltonian to mimic e.g. inco-
herent energy exchange processes. Electrons may leave the junc-
tion towards the probe, and come back –with a different phase and
energy – only conserving the net charge current from the source
to the drain.

Using different variants of the LBP method: dephasing probe,
voltage and voltage–temperature probes, we demonstrated in a
series of papers [34–39] that the LBP technique can provide a
meaningful description of molecular electronic conduction under
phase loss, inelastic effects, and dissipation: (i) The method cap-
tures the tunneling-to-hopping crossover in the electronic con-
ductance and the thermopower [38] by varying e.g. molecular
length, fitting to describe conductance in organic molecules [34]
and biomolecules [37–39]. (ii) It can provide the current–voltage
characteristics at high bias, demonstrating the crucial role of dis-
sipation on the junction’s operation [35,36]. (iii) It can describe
intermediate coherent–incoherent transport effects [37].

The code presented here has been mainly developed in
Refs. [34,35,37–39]. It allows users to calculate electronic transport
coefficients inmetal–molecule–metal junctions using different fla-
vors of the LBP method, and thus incorporate various types of in-
coherent effects in transport calculations.Within this package, one
specifies a tight-binding Hamiltonian for the molecular junction,
or the sequence of a double-stranded (ds) DNA molecule. Other
input parameters are themetal-molecule hybridization energy, the
temperature of the thermal environment, and the rate constant
of environmental effects. Based on that, one receives the elec-
tron current and linear response transport coefficients: electrical
conductance, electronic thermal conductance, and the Seebeck
coefficient, to construct the thermoelectric figure of merit.

The code is written in the MATLAB programming language.
Since calculations exemplified here are relatively cheap computa-
tionally, there is no need to resort to a coding language optimized
for speed.Weemphasize the flexibility that this code offers to users
looking to simulate complex molecular geometries or nanoelec-
tronic devices. Our hope is that the program would be adapted
and included within density-functional theory-nonequilibrium
Green’s function (DFT-NEGF) simulations of molecular transport
coefficients, which to date are in-general performed based on the
coherent Landauer formula, see for example Ref. [40].

Various other software packages are dedicated to solving quan-
tum transport problems in the language of the Green’s function,
yet focusing on other aspects of the problem [41]. In particular,
other programs target e.g. extended nanostructures [42] (KWANT),
device modeling [43,44] (NEMO5, NEXTNANO), the description
of the atomistic structure of the whole system using DFT [45–
47] (SMEAGOL, TRANSIESTA, ATOMISTIX TOOLKIT). Nevertheless,
incorporating inelastic effects due to electron–nuclei interaction
into transport calculations remains a challenge, and is the focus of
our software package.

The paper is organized as follows. In Section 2 we present the
LBP formalism. In Section 3, we discuss technical details of the
code, as well as the handling of inputs and outputs. In Section 4, we
describe several examples of how the code can be used to calculate
transport properties for linear one-dimensional (1D) chains, DNA
sequences, and benzene junctions. In Section 5, we conclude and
discuss potential generalizations to the code.

2. Methodology

The physical problem of interest here is of a metal–molecule–
metal junction. The Landauer formalism describes quantum
coherent transport of particles in the language of transmission
functions [17]. To implement incoherent scattering effects of elec-
trons on the junction due to different interactions (electron–
electron, electron–nuclei, etc.), we employ the Landauer–Büttiker
probe method. The total Hamiltonian reads

Ĥ = ĤM + ĤL + ĤR + ĤT + ĤP + V̂P . (1)

Themolecular electronic part is described by a tight bindingHamil-
tonian ĤM with n = 1, 2, . . . ,N localized siteswith energies ϵn and
inter-site coupling matrix elements tn,m,

ĤM =

N∑
n=1

ϵnĉ†
n ĉn +

N−1∑
n,m=1

tn,mĉ†
n ĉm + h.c. (2)

Here, ĉ†
n (ĉn) are fermionic creation (annihilation) operators of

electrons on each site. The two metal electrodes are modeled by
Fermi seas of noninteracting electrons,

Ĥν =

∑
k

ϵν,kâ
†
ν,kâν,k, ν = L, R, (3)

with â†
ν,k (âν,k) as fermionic creation (annihilation) operators of

electrons with momentum k in the ν lead. Electrons can tunnel
from the L (R) metal to site 1 (N),

ĤT =

∑
k

gL,kâ
†
L,kĉ1 +

∑
k

gR,kâ
†
R,kĉN + h.c. (4)

In the absence of probes, this Hamiltonian dictates phase-coherent
electron dynamics. Incoherent scattering effects of electrons on the
molecule are introduced by attaching fictitious reservoirs (probes)
to the molecule. For simplicity we assume that each electronic site
is coupled to an independent probe,

ĤP =

N∑
n=1

∑
k

ϵn,kâ
†
n,kân,k. (5)

The nth probe exchanges particles with the nth site of the molecu-
lar wire,

V̂P =

N∑
n=1

∑
k

gn,kâ
†
n,kĉn + h.c. (6)

Here â†
n,k (ân,k) are fermionic creation (annihilation) operators for

an electron in the n = 1, 2, . . . ,N-th probewithmomentum k and
gn,k are the tunneling energies from the nth molecular site into the
nth probe. We employ ν = L, R to identify the (physical) metal
electrodes, n to identify the fictitious probe leads, and α = n, ν
to count all metal terminals. Below, we explain the different self
consistent conditions which the probes satisfy.

The hybridization energy (broadening) of the molecule to the
metal leads, γL,R, and its coupling to the probes γn is given by

γα(ϵ) = 2π
∑
k

|gα,k|
2δ(ϵ − ϵα,k). (7)
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We typically work in the wide-band limit, therefore take γα as
energy independent parameters. Note that this choice does not
pose a central limitation to our code; it is in fact relatively simple
to implement different spectral densities for γα(ϵ) [34].

It is typical to characterize the interactionwith the environment
(probes) by a single parameter, γp = γn. However, site-specific
parameters are built-in as an option for our code, and do not in
anyway affect the implementation. Themodel (1) does not include
explicit many-body interactions, thus the electric current leaving
the L contact satisfies the Landauer–Büttiker formula (per spin),

IL =
e
h

∑
α

∫
∞

−∞

TL,α(ϵ) [fL(ϵ) − fα(ϵ)] dϵ. (8)

Here, fν(ϵ) = [eβν (ϵ−µν ) + 1]−1 are the Fermi–Dirac distri-
bution functions in the physical electrodes, given in terms of
the temperatures kBTν = β−1

ν and chemical potentials µν . In
contrast, the distribution functions fn(ϵ) are determined from
the dephasing/voltage/voltage–temperature probe conditions, ex-
plained below. In direct analogy to Eq. (8), the net current between
the nth probe and the molecular system can be written as

In =
e
h

∑
α

∫
∞

−∞

Tn,α(ϵ) [fn(ϵ) − fα(ϵ)] dϵ. (9)

The transmission functions in Eqs. (8) and (9) are obtained from the
(N×N)-sized Green’s function and the hybridizationmatrices [48],

Tα,α′ (ϵ) = Tr[Γ̂α′ (ϵ)Ĝr (ϵ)Γ̂α(ϵ)Ĝa(ϵ)]. (10)

The trace is performed over theN electronic states of themolecule.
We assign Tα,α(ϵ) = 0, since these terms do not add to the net
current.

The Green’s function is defined in terms of the retarded and
advanced Green’s functions, Ĝr (ϵ) = [ϵ Î − ĤM +

i
2 (Γ̂L + Γ̂R +∑

nΓ̂n)]−1, Ĝa(ϵ) = [Ĝr (ϵ)]†.
In the code provided and the examples presented here, the

molecule is coupled through a single electronic site to the metal
leads, thus the hybridization matrices have a single nonzero value,

[Γ̂n(ϵ)]n,n = γn(ϵ), n = 1, 2, . . . ,N
[Γ̂L(ϵ)]1,1 = γL(ϵ), [Γ̂R(ϵ)]N,N = γR(ϵ), (11)

with the molecule–metal hybridization and the environmental
decoherence/dissipation rates γα/h̄, see Eq. (7). This setup can
be easily generalized, to couple the metals to multiple molecular
electronic states.

The probe technique can be implemented under different self-
consistent conditions, allowing us to craft incoherent electron
scattering processes: elastic effects are implemented via the ‘‘de-
phasing probe’’, dissipative inelastic effects are introduced through
the ‘‘voltage probe’’. Inelastic effects can be further studied under
the combination of voltage and temperature gradients using the
‘‘voltage–temperature probe’’. As implemented in this code, the
dephasing probe can be used at any bias, but the voltage and
voltage–temperature probes should be operated only in the lin-
ear response regime [49]. Generalizations beyond linear response
were discussed in Refs. [35,36], but are not included in the present
implementation. Below, we use the following notation for the volt-
age bias, ∆V ≡ ∆µ/ewith ∆µ = (µL − µR), and the temperature
bias ∆T ≡ TL − TR.

2.1. Dephasing probe

Incoherent – but elastic – scattering processes are implemented
via the dephasing probe, where we demand energy resolved charge
conservation: Each probe is required not only to conserve the

particle current from the source to the drain, but furthermore,
it can neither contribute nor dissipate energy to/from electrons.
The dephasing probe can be readily used for calculating the full
current–voltage (I–V) characteristics of a molecular junction be-
yond linear response. More details over the physical action of the
dephasing probe are included in Ref. [34].
Input. Based on the molecular electronic parameters, we calculate
the transmission functions from Eq. (10). One further needs to sup-
ply the Fermi–Dirac distributions fL,R(ϵ) for the metal electrodes,
given in terms of the chemical potentials µL,R and temperatures
TL,R.
Procedure. Mathematically, incoherent-elastic processes are im-
plemented by requiring that the energy resolved charge current to
each probe [the integrand in Eq. (9)], nullifies,

in(ϵ) = 0, ∀n (12)

with the total charge current In =
∫
in(ϵ)dϵ. Calculations proceed

with a two-step procedure:

1. The condition (12) translates into N linear equations for the
electrondistributions in eachprobe, fn(ϵ). These are received
by a matrix inversion at every energy ϵ within the band

M(ϵ)f(ϵ) = v(ϵ). (13)

Here, the unknown probe functions are collected into the
vector f(ϵ). The inhomogeneous term is

vn(ϵ) = Tn,L(ϵ)fL(ϵ) + Tn,R(ϵ)fR(ϵ). (14)

TheN×N matrixM(ϵ) is constructed from the transmission
functions,

M(ϵ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
α

T1,α(ϵ) −T1,2(ϵ) −T1,3(ϵ) ...

−T2,1(ϵ)
∑

α

T2,α(ϵ) −T2,3(ϵ) ...

−T3,1(ϵ) −T3,2(ϵ)
∑

α

T3,α(ϵ) ...

... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Note that the distribution functions fn(ϵ) do not necessarily
follow the Fermi–Dirac functional form, though they are
typically close to that in linear response [36]. Eq. (13) is
solved for a fine grid of energies ϵ, to receive the distribu-
tions fn(ϵ).

2. Given charge conservation (based on the probe condition),
the net source (L) to drain (R) electric current across the
junction is calculated from Eq. (8), by summing up all the
currents leaving the left terminal.

Output. The dephasing probe provides the current–voltage char-
acteristics even beyond linear response. For example, assuming
TL = TR, we simulate I as a function of bias voltage ∆µ, or depict
the conductance G ≡ I/∆V .

2.2. Voltage probe ∆µ ̸= 0, ∆T = 0.

The voltage probe is used to study the electrical conductance
of molecular junctions in the linear response regime, ∆µ = µL −

µR ≪ T , γα . This probe allows for incoherent-inelastic effects, po-
tentiallywith heat absorption/release on the junction.We consider
here a junction with a fixed temperature all through. One could
generalize this setup and describe the electrical conductance of a
dissipative junction under a temperature gradient.
Input. Based on the molecular electronic parameters, we evaluate
the transmission functions from Eq. (10). One further needs to pro-
vide the applied bias voltage ∆µ = µL − µR and the temperature
T = Tα .
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Procedure. Incoherent inelastic-dissipative effects can be intro-
duced by requiring the net total particle current flowing between
eachprobe and the system, Eq. (9), to vanish,while allowing energy
exchange,

In =
e
h

∑
α

∫
∞

−∞

Tn,α(ϵ) [fn(ϵ) − fα(ϵ)] dϵ = 0, ∀n. (15)

We require the probe distribution functions to take the form of
Fermi–Dirac functions, fn(ϵ) = [eβ(ϵ−µn) + 1]−1. In principle,
solving for µn is a nonlinear problem, which can be numerically
addressed as was discussed in e.g. Refs. [35,36]. In the current
implementation, however, we restrict our calculations to the linear
response regime. Assuming low voltage, we Taylor-expand the
Fermi–Dirac functions to first-nontrivial order,

fα(ϵ, µα) = feq(ϵ, ϵF ) −
∂ feq(ϵ, ϵF )

∂ϵ
(µα − ϵF ). (16)

We explicitly indicate the dependency of the Fermi function on the
Fermi energy ϵF = µeq. For convenience, below we set ϵF = 0. In
linear response, Eq. (15) reduces into a set of N linear equations,

µn

∑
α

∫
∞

−∞

(
−

∂ feq
∂ϵ

)
Tn,α(ϵ)dϵ

−

N∑
n′=1

µn′

∫
∞

−∞

(
−

∂ feq
∂ϵ

)
Tn,n′ (ϵ)dϵ

=

∫
∞

−∞

dϵ
(

−
∂ feq
∂ϵ

)
[Tn,L(ϵ)µL + Tn,R(ϵ)µR]. (17)

We proceed with a two-step procedure:

1. The N equations above can be recast into Mµ = v, to be
solved by a singlematrix inversion and provide the chemical
potentials of the probes at each site, µn.

2. We calculate the net charge current flowing across the
system in linear response by linearizing Eq. (8), using the
probes’ chemical potentials,

I =
e
h

∑
α

[∫
∞

−∞

TL,α(ϵ)
(

−
∂ feq
∂ϵ

)
dϵ

]
(µL − µα). (18)

Output. The voltage probe method yield the linear-response elec-
trical conductance of the junction, G ≡ I/∆V .

2.3. Voltage–Temperature probe, ∆µ ̸= 0, ∆T ̸= 0

This probe adds an energy conservation condition to the pre-
viously described voltage probe. It implements thus incoherent-
inelastic—yet non-dissipative scattering effects. As such, it can be
used to calculate Onsager coefficients for two-terminal (source–
drain) thermoelectric transport, in the presence of incoherent ef-
fects.
Input. Based on the molecular electronic parameters, we calculate
all transmission functions from Eq. (10). We further provide pa-
rameters for the physicalmetal electrodes: the chemical potentials
µL,R and temperatures TL,R.
Procedure. The potential and temperature profiles for the probes
are calculated from two sets of conditions, for charge conservation
and zero heat dissipation on the junction (n = 1, 2, . . . ,N),

In =
e
h

∑
α

∫
∞

−∞

dϵTn,α(ϵ) [fn(ϵ) − fα(ϵ)] = 0,

Qn =
1
h

∑
α

∫
∞

−∞

dϵ(ϵ − µn)Tn,α(ϵ) [fn(ϵ) − fα(ϵ)] = 0. (19)

These two requirements translate into 2×N non-linear equations
for µn and Tn, to provide nonlinear transport coefficients. Here,

we are only concerned with linear response coefficients, thus we
Taylor-expand the Fermi–Dirac functions around the equilibrium
temperature Teq = (TL + TR)/2 and chemical potential ϵF = (µL +

µR)/2,

fα(ϵ, Tα, µα) = feq(ϵ, Teq, ϵF )

−
∂ feq(ϵ, Teq, ϵF )

∂ϵ

[
ϵ − ϵF

Teq
(Tα − Teq) + (µα − ϵF )

]
. (20)

The derivatives are evaluated at the Fermi energy ϵF , taken as the
reference point in our calculations. Under the linear approxima-
tion, Eq. (19) reduces to (p = 0, 1),∑

α

∫
∞

−∞

dϵTn,α(ϵ)
(

−
∂ feq
∂ϵ

)
(ϵ − ϵF )p

×

[
ϵ − ϵF

Teq
(Tn − Tα) + (µn − µα)

]
= 0. (21)

The N equations with p = 0 (p = 1) correspond to charge (heat)
current conservation equations (19). We proceed as follows:

1. Eq. (21) organizes into a linear set,Mλ = v, withM compris-
ing the 2N equations as explained above, λ a vector listing
the probe temperatures and chemical potentials, and v the
inhomogeneous term in Eq. (21), organized from expres-
sions involving TL,R andµL,R.We solve this linear systemby a
matrix inversion and obtain the probes’ chemical potentials
µn and temperatures Tn.

2. Linearizing Eq. (8), we receive

I =
e
h

∑
α

[
(µL − µα)

∫
∞

−∞

TL,α(ϵ)
(

−
∂ feq
∂ϵ

)
dϵ

+ (TL − Tα)
∫

∞

−∞

TL,α(ϵ)
(

−
∂ feq
∂ϵ

)(
ϵ − ϵF

Teq

)
dϵ

]
. (22)

Similarly, the heat current, evaluated at the left contact is
received as follows,

Q =
1
h

∑
α

[
(µL − µα)

∫
∞

−∞

(ϵ − µL)TL,α(ϵ)
(

−
∂ feq
∂ϵ

)
dϵ

+ (TL − Tα)

×

∫
∞

−∞

(ϵ − µL)TL,α(ϵ)
(

−
∂ feq
∂ϵ

)(
ϵ − ϵF

Teq

)
dϵ

]
. (23)

Output. Using this procedure, we can extract the junction’s elec-
trical conductance, thermopower, and the electronic thermal con-
ductance, then calculate the thermoelectric figure ofmerit ZT . First,
we note that in the linear response regime, the electric and heat
currents can be formally written as [50]

I = G∆V + GS∆T , (24)

Q = GΠ∆V + (K + GSΠ )∆T . (25)

The thermopower S, or the Seebeck coefficient, is defined as

S ≡ −
∆V
∆T

⏐⏐⏐
I=0

. (26)

In the linear response regime the maximum thermoelectric effi-
ciency, of heat to work conversion, is related to Carnot efficiency
ηC = 1 − TC/TH by [50]

ηmax = ηC

√
ZT + 1 − 1

√
ZT + 1 + 1

, (27)

with the thermoelectric figure of merit

ZT =
GS2

K
T . (28)
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We employ the voltage–temperature procedure twice. First, we
apply a voltage bias ∆V ̸= 0, but assume that ∆T = 0. Based
on the linearized currents, Eq. (24), we extract G and Π . Next, we
apply a temperature difference TL > TR at zero voltage bias. From
this calculation, and using the values for G and Π , we evaluate
the thermopower S and the electronic thermal conductance K .
Combining these coefficients we receive ZT .

3. Technical details

3.1. Program structure

We provide two packages. Linear-DNA and GeneralHamil-
tonian. The Linear-DNA package simulates linear, N-site
molecules: 1-dimensional chains or double-stranded (ds) DNA se-
quences. It can be immediately applied to study transport proper-
ties as a function of molecular length. The GeneralHamiltonian
package adds great flexibility: It allows one to define an arbitrarily
complex tight-binding Hamiltonian, distinct probe couplings at
each site, and to choose which molecular states interact with the
probes. Overall, the two packages run an identical algorithm, and
are structurally similar. Further, as much as possible we maintain
identical parameters and variable names between the two pack-
ages.

All energy variables are given in units of eV. Temperature is
inputted in Kelvin. Since we do not include the prefactor e2/h
in our code when calculating the electrical conductance G, it is
received directly in units of the quantum of conductance, G0 =

e2/h.
Similarly, since the factors kB and e aremissing in the calculation

of the thermopower S, it is directly computed in units of (kB/e).
The electronic thermal conductanceK requiresmore attention. It is
provided in our program in units of eV. To convert it to its physical
units, one needs to multiply it by the (missing) factor (e × kB/h)
in MKS, which converts it to J/(K sec). It can be also meaningfully
presented via theWiedemann–Franz law, by displaying the dimen-
sionless ratio K/(TGL) with L ≡ π2k2B/3e

2. The figure of merit ZT is
output as a dimensionless coefficient.

The simulation script for the program is main.m. It contains
the backbone of the algorithm: it reads data, loops over different
parameters, and manages outputs. The overall algorithm goes as
follows:

1. The script Input.m initializes parameters and the condi-
tions under which the system is simulated. In the Linear-
DNA package, the choice (calctype=1) initializes the lin-
ear 1-dimensional model, by setting the parameters of the
molecular electronic Hamiltonian ĤM : molecular length,
site energies ϵn, and tunneling terms tn,m. Energy param-
eters are all given in units of eV. For the ds-DNA model
(calctype=2), the DNA sequences studied are directly
specified instead. One should enter the sequences along a
single strand, from the 5’ to the 3’ end. The metal leads are
connected to the 3’ sites [51]. In the GeneralHamilto-
nian package, the initialization process includes the con-
struction of the studied Hamiltonians and hybridization
matrices, thus this package does not include a separate
hamiltonian.m function. One should select the type of
the probe (probe=1, 2, 3 for dephasing, voltage, or voltage–
temperature probe, respectively), the temperature, metal-
molecule hybridization energies γL,R, and molecule-probe
interaction energy γp. The metallic bands are assumed to
extend between ±D, taken as a large parameter (5 eV in
our simulations). Numerical integration is performed by a
simple quadrature summation over a fine grid. The default
setting is dϵ ∼ 10−3 eV, though themesh size should always
be smaller than the smallest (physical) energy parameter of
the system.

2. The script definitions.m lists physical constants used in
the computation: the Fermi energy ϵF = 0, the applied
source–drain voltage bias. It also generates the energy grid
for numerical integration based on D, dϵ, entered in In-
put.m, as well as the matrices for keeping the output data.

3. The functions hamiltonianLinear.m and hamilto-
nianDNA.m build the Hamiltonian matrix ĤM for a linear
chain or the DNA model, based on the parameters spec-
ified in the script Input.m. The hamiltonianLinear.m
function can be easily modified to model more complex
models, beyond a linear chain. In fact, besides the built-in
construction of site 1 and N attached to the L and R leads,
respectively, the system Hamiltonian can be adapted to an
arbitrary tight-binding network.

4. The function transmission.m computes the energy de-
pendent transmission functions between every pair of ter-
minals Tα,α′ (ϵ). If the probes are inactive (γp = 0), this
calculation is performed in a trivial way, producing zero
transmission functions for processes involving probes. Note
that for the setups considered in this code, the transmission
functions are always symmetric, Tα,α′ (ϵ) = Tα′,α(ϵ).

5. The functions dprobe.m, vprobe.m, vtprobe.m construct
the relevant matrix M, and solve the appropriate set of
linear equations, as described in Sections 2.3, 2.1 and 2.2,
for the dephasing, voltage and voltage–temperature probe,
respectively. In the Linear-DNA package, the conductance
is the only output of the dephasing and voltage probes. In the
GeneralHamiltonian package, the dephasing probe can
be used to simulate the I–V characteristics at high bias. The
voltage–temperature probe provides the thermoelectric lin-
ear response coefficients: conductance, thermopower, ther-
mal conductance and the figure of merit.

6. Results are saved as dataD.mat, dataV.mat or dataVT.
mat, when using the dephasing, voltage, or voltage–
temperature probes, respectively.

3.2. Package details

Linear-DNA package

• main.m
• Input.m
• definitions.m
• hamiltonianLinear.m
• hamiltonianDNA.m
• transmission.m
• dprobe.m
• vprobe.m
• vtprobe.m

GeneralHamiltonian package

• main_general.m
• Input_general.m
• definitions_general.m
• transmission_general.m
• dprobe.m
• vprobe.m
• vtprobe.m

4. Examples

In this section, we present some results from the ProbeZT
package. First, we describe the application of the Linear-DNA
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Fig. 1. (a)–(b) Electrical conductance of a uniform 1D molecular chain with ϵB = 0.5 eV, tn,n±1 = 50 meV, γL,R = 50 meV, ∆µ = 10 meV. Computations were performed
using the dephasing probe. (c) I–V characteristics for one of the chains in (a)–(b) with length N = 4 at temperature T =50 K. For simplicity, the molecular parameters are
kept fixed under bias.

code to simulate the thermoelectric performance of 1D chains and
ds-DNA molecules. We then exercise the GeneralHamiltonian
program, and study quantum interference and decoherence in a
single benzene molecular junction with a meta connection to the
metal leads.

4.1. Linear 1D chains: current, conductance, thermoelectric perfor-
mance

Fig. 1 displays representative conductance and current re-
sults for linear molecular wires representing e.g. conjugated poly-
mers [8]. Simulations were performed using the dephasing probe
(probe=1 in Input.m). The chain is uniform: the molecular sites
take the same energy ϵB, and nearest-neighbor coupling is de-
scribed by a single tunneling element t . The chain is coupled to the
leads via the hybridization energies γL,R, and to the probe terminals
by the energy γp. The Hamiltonian of this system is generated
automatically by our code by setting calctype=1 and providing
the desired system and environmental parameters in Input.m.

The probe technique introduces incoherent effects into the
transport behavior, on top of coherent phenomena. Panels (a)–(b)
in Fig. 1 clearly demonstrate the contribution of different transport
mechanisms to molecular conduction: deep tunneling GT at low
temperatures and for short chains, resonant-coherent (ballistic)
conduction GB at high temperatures and for long chains weakly
coupled to the probes, and multi-step hopping GH for long chains
at high γp. The dephasing probe can be further employed to study
the I–V characteristics of the junction under high voltage bias,
see panel (c). This option is only included in the GeneralHamil-
tonian package; It provides the conductance I/∆V at high bias,
allowing one to recover the current itself.

Using the voltage–temperature probe (probe=3 in Input.m),
we analyze the junction’s performance as a thermoelectric device.
The program computes the junction’s electrical conductance, See-
beck coefficient, electronic thermal conductance, and ZT figure of
merit. An example is displayed in Fig. 2, using a uniform wire
(identical to the last example) with ϵB = 0.5 eV and t = 0.05 eV.
Panel (a) demonstrates the tunneling-to-hopping crossover of the
conductance in this off-resonant case. Panel (b) shows the corre-
sponding subtle trend in the thermopower: It increases linearly in
the deep tunneling regime, saturates in the hopping regime, but
shows high values for small γp, when resonant conduction domi-
nates [38]. The thermopower is given in units of kB/e. Thus, using
the electron charge (with its negative sign), we receive negative
values for S in the present model, consistent with the fact that
transport here takes place via the LUMO of the junction (ϵB > ϵF ).
In panel (c), we further test the Wiedemann–Franz (WF) law [50].

For coherent conduction, when the transmission function does not
show significant features around the Fermi energy (in otherwords,
when the Seebeck coefficient is very small), theWiedemann–Franz
law should be satisfied, K/(TGL) = 1 with L ≡ π2k2B/(3e

2). We find
that the WF law is approximately satisfied in the hopping regime,
but when γp is small, large deviations appear, in accord with the
behavior of S in panel (b). The thermoelectric figure of merit in
panel (d) shows a non-monotonic behavior, indicating that short
chains of N = 3 sites, with weak environmental effects, could be
advantageous for thermoelectric applications.

4.2. ds-DNA Junctions

In recent studies, we simulated the conductance and the ther-
mopower of ds-DNA molecules, observing the tunneling to hop-
ping crossover as a function of the barrier width, i.e., the number
of A:T base pairs at the center of the sequence [38,39]. Here, A,
G, C and T are the adenine, guanine, cytosine and thymine bases,
respectively. The package Linear-DNAwith calctype=2 can be
used to generate such results, as well as the electronic thermal
conductance and the thermoelectric figure of merit.

We model the electronic structure of ds-DNA molecules with
a tight-binding Hamiltonian, which is described in detail in Refs.
[37,52,53]. Here we only note that the parametrization, developed
in Ref. [52], captures the double-helical topology of ds-DNA as
well as its chirality. We simplify this parametrization, and assign
a single averaged value for the site energies of the different DNA
bases, by following Ref. [53].

The Hamiltonian for the ds-DNA is constructed automatically
in hamiltonianDNA.m from a base pair sequence defined in In-
put.m. The sequences are inputted as a cell array of 5’ to 3’ ordered
strings with letters ‘a’, ‘c’, ‘g’, ‘t’ standing for the corresponding
nucleotide in the sequence. For example, the ds-DNA molecules
5’-ACGC(AT)mGCGT-3’ and 5’-ACGC(AT)m−1AGCGT-3’, m = 1 − 4,
with 9 to 16 base pairs, are prepared by defining sequence_cell
= {‘acgcagcgt’, ‘acgcatgcgt’, ‘acgcatagcgt’,
‘acgcatatgcgt’, ‘acgcatatagcgt’, ‘acgcatatat-
gcgt’, ‘acgcatatatagcgt’, ‘acgcatatatatgcgt’}.
The molecule is connected to the two leads through the 3’ sites.
Similarly to the previous examples, one needs to specify themetal-
molecule hybridization energy γL,R, and the electron-environment
interaction energy, encapsulated within the parameter γp. For
simplicity, we used a single value γp, identical for all bases. Further,
the position of the Fermi energy is defined inhamiltonianDNA.m,
and it is given by the variable EFermi. It is set in the present
simulations to the energy of the G base.
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Fig. 2. Linear response transport coefficients of a uniform 1D chain at T =200 K, with the same parameters as in Fig. 1. Simulations were performed using the voltage–
temperature probe.

Fig. 3. Linear transport coefficients of ds-DNAmolecules with an increasingly long A:T segment. (a) Conductance, (b) thermopower, (c) electronic thermal conductance, and
(d) thermoelectric figure of merit. Sequences are ACGC(AT)mGCGT and ACGC(AT)m−1AGCGT (m = 1 − 4), see Ref. [38]. Simulations were performed at T =5 K to attenuate
the contribution of ballistic electrons. Other parameters are γp =10 and 30 meV, γL,R =50 meV.

Fig. 3 displays simulation results for ds-DNA sequences with an
A:T barrier using the voltage–temperature probe, setting probe=3
in Input.m. These sequences were examined experimentally in
Ref. [14] and modeled in great detail in our recent work [38].
Our simulations reproduce qualitatively the measurements, dis-
playing the crossover from tunneling to hopping conduction upon
the increase of the number of A:T base pairs. In addition to
the conductance and the thermopower, which were studied in
Ref. [38], we present here the electronic thermal conductance and
the thermoelectric figure of merit ZT for DNA. We find that these
sequences obey theWiedemann–Franz law. The attained ZT values
are therefore quite small, though again we note that short (but
not ultra-short) molecules could be optimized for thermoelectric
applications.

An important caveat of our simulations is the promotion of
ballistic transport beyond what one expect in reality for DNA
molecules. This is because the underlying electronic structure
used here is static, and dynamical-nuclear effects are missing. To
minimize the contribution of resonant conduction, we reduce the
temperature—while keeping environmental effects active with a
finite γp. Formore details, see Ref. [38]. To circumvent this pitfall, it
would be useful to perform probe simulations on a large ensemble
of configurations generated from e.g. classical molecular dynamic
simulations [54,55].

4.3. Quantum interference in benzene junctions

Manifestations of quantum interference effects in molecular
electronic junctions have captured much attention in recent years,
see for example Refs. [56–58]. We exemplify here the application
of the GeneralHamiltonian code to study the impact of envi-
ronmental interactions on quantum interference in benzene nano-
junctions. It is known that when a benzenemolecule is attached in

ameta configuration to twometal leads, electrons passing through
it suffer destructive interference, resulting in a low conductance
near the Fermi energy, relative to the para configuration. For a
recent study, see Ref. [57].

The tight-binding Hamiltonian of the benzene junction is con-
structed within the Input_general.m script as

hh =

⎡⎢⎢⎢⎢⎢⎣
0 tn 0 0 0 tn
tn 0 tn 0 0 0
0 tn 0 tn 0 0
0 0 tn 0 tn 0
0 0 0 tn 0 tn
tn 0 0 0 tn 0

⎤⎥⎥⎥⎥⎥⎦ (29)

The variable tn stands for the tight-binding parameter t in the
code.

We further set ϵB =0 and t = 2 eV, taken from e.g. Ref. [28]. The
script Input_general.m allows to use distinct probe couplings
on each site. Here we introduce a single probe on site 2, 3, 4, or 6
withγp =2 eV, see Fig. 4. The choiceLeadsL=[1]; LeadsR=[5];
places the metal leads in a meta configuration. We employ the
voltage probe to introduce incoherent effects, defined by setting
probe=2. In Fig. 4, we study the effect of a single, strongly coupled
voltage probe, attached to an atom in the ring, on the direct left-
to-right transmission function TL,R(ϵ). Under environmental in-
teractions, this component suffers decoherence effects. However,
bath-assisted contributions (responsible for the development of
an ohmic conduction) are missing from the direct transmission
TL,R(ϵ). In panel (a), we show the case with no probes, and observe
a series of anti-resonances resulting from quantum interference
in the molecule. By attaching a probe to site 2 or 4, which are
exactly equivalent given the symmetric nature of the system at
low bias, we observe that the destructive interference at the Fermi
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Fig. 4. Interference and decoherence in benzene junctions. (a)–(d) Left-to-right transmission function TL,R(ϵ) for a 6-member meta-connected ring with ϵB = 0, t = 2 eV,
γL,R = 2 eV and (a) γp = 0, (b), (c) and (d), γp =2 eV, with a single probe attached to sites 2, 3 and 6 respectively. (e) Low-bias conductance as a function of the Fermi energy,
for T = 5 K. Inset: benzene ring attached to two metal leads in a meta configuration, with numbered carbons for reference. Here ‘L’ and ‘R’ identify the metal contacts.

energy is damped (panel (b)). In panel (c), we attach a probe to
site 3, and find that this choice leaves the anti-resonance at the
Fermi energy untouched, though anti-resonances in the wings of
the transmission function are destroyed. In panel (d), we find that
a probe placed on site 6 destroys every anti-resonance in the
transmission function. We further show in panel (e) the effect of
the probe on the conductance, scanned over the position of the
Fermi function.

We find that the anti-resonances are extremely fragile to in-
coherent effects as introduced by a probe, and they significantly
dampen out as we increase γp.

Howdowe receive the transmission and conductance as a func-
tion of energy, Fig. 4, within our package? Consider Eq. (8) at low
temperature and voltage bias. The difference of Fermi functions
reduces to a Dirac delta function and one gets,

IL =

∑
α

TL,α(ϵF )(µL − µα), (30)

or the conductance G = TL,R(ϵF ) +
∑

νTL,ν(ϵF )(µL − µν)/∆µ.
Since we are calculating all transmission functions, we can readily
compute the behavior of the conductance as a function of energy.
This option in included in our package as an example, using the
vprobe_trans.m script instead of vprobe.m.

5. Summary

We have presented a software package, ProbeZT, for comput-
ing the electrical conductance and thermoelectric properties of
molecular electronic junctions. The method simulates incoherent
effects (decoherence, inelastic effects, dissipation) on the junction
by implementing the Büttiker probemethod into the Landauer for-
malism. Our code allows users to simulate uniform 1D or ds-DNA
systems via built-in programs, or arbitrary tight-binding geome-
tries using user-defined parameters. Future extensions include the
simulation of junctions in which the electrodes hybridize with
multiple atoms [59].

The code is relatively short. The current implementation is
efficient for systems with N < 15 sites. Other parameters that
critically determine runtime are the metallic bandwidth D and its
energy discretization. We recommend users to work with D <
10 eV and dϵ > 10−4 eV for systems of 1 meV≤ ϵB, t, γp,L,R, kBT ≤

1 eV. AdvancedMATLABuserswill find it easy tomodify and extend
the code to study more involved applications, for example two-
dimensional systems.

Our hope is that this software would encourage the implemen-
tation of Büttiker’s probes into DFT-NEGF calculations of nano-
electronic systems [46]. Particularly, with growing experimental
capabilities in measuring single-molecule DNA conduction, see
for example [13–15,32,33,60], we expect this package to assist in
identifying sequences of desired electronic and thermal properties.
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