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It is known that quantum systems yield non-exponential (power law) decay on long time scales, associated
with continuum threshold effects contributing to the survival probability for a prepared initial state. For an
open quantum system consisting of a discrete state coupled to continuum, we study the case in which a
discrete bound state of the full Hamiltonian approaches the energy continuum as the system parameters are
varied. We find in this case that at least two regions exist yielding qualitatively different power law decay
behaviors; we term these the long time ‘near zone’ and long time ‘far zone.’ In the near zone the survival
probability falls off according to a t−1 power law, and in the far zone it falls off as t−3. We show that the
timescale TQ separating these two regions is inversely related to the gap between the discrete bound state
energy and the continuum threshold. In the case that the bound state is absorbed into the continuum and
vanishes, then the time scale TQ diverges and the survival probability follows the t−1 power law even on
asymptotic scales. Conversely, one could study the case of an anti-bound state approaching the threshold
before being ejected from the continuum to form a bound state. Again the t−1 power law dominates precisely
at the point of ejection.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

For decades it has been known that deviations from exponential decay in quantum systems exist under quite
general conditions, both on extremely short and very long time scales [1–4]. The short time scale deviations
typically give rise to parabolic decay; rapidly repeated measurements of the system on this timescale may
give rise to either the quantum Zeno or quantum anti-Zeno effects, resulting in decelerated or accelerated
decay, respectively [2,5,6]. However, these effects typically occur on quite short timescales, before giving
way to the more familiar exponential decay, and hence experimental study was elusive for several decades;
it is only relatively recently that these effects were experimentally verified [7, 8].

Meanwhile, it was Khalfin [9], relying on the Paley-Wiener theorem [10], who showed that a quantum
system that is bounded below necessarily gives rise to non-exponential decay on asymptotic timescales; an
alternative proof that does not rely on the Paley-Wiener theorem was provided by Hack [11]. However, the
timescales on which the non-exponential effects manifest typically exceed several lifetimes, after which
the survival probability is usually quite depleted, again posing an experimental challenge. It is therefore
quite recently this effect has been verified experimentally in the luminescence decay properties of dissolved
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organic materials following laser-excitation [12]. The recent advances in the fabrication of nano-scale de-
vices and cold atom trapping provide an optimistic outlook for deeper studies in this direction, particularly
given the previous success in detecting non-exponential decay at short times for sodium atoms initially
trapped in an accelerating optical potential [7].

The long-time deviation, which typically takes the form of an inverse power law, is intimately connected
with the properties of the continuum and particularly the threshold. As an example, for a particle initially
trapped in a shallow inner potential well it has been shown that as one varies the strength of a repulsive
outer inverse square potential, the exponent of the power law varies in a predictable manner [13]. In another
study, it has been shown for a radial potential that for the s-wave component of the wave function as one
brings the energy of an initially prepared unstable state (a resonant state initially localized in the inner
well) close to the threshold that the exponential decay can be completely suppressed, resulting in power
law decay on all time scales [14]. A similar effect is demonstrated in [15] as a resonant state approaches
the threshold in a semiconductor double barrier quantum structure.

None of the three above studies, however, consider the effect of bound states on the power law decay. A
semi-infinite tight-binding chain with an endpoint impurity is considered in [16], in which case exponential
decay is again suppressed, however, in this case the effect is associated with the appearance of a bound
state. The same effect is observed in an equivalent model in [17], as well as in a semi-infinite chain with
a two-level endpoint impurity in [18]. In the latter two studies, an intensification of the power law decay
is associated with the appearance or dissolution of a bound state (i.e. a transition from a localized state to
a virtual state in the language of [18]). We also note that the effect of a bound state near threshold on the
non-exponential decay is considered from a more mathematical perspective in [19]. However, the analysis
presented in that work is not rooted in any specific physical Hamiltonian but rather the authors place
conditions on the spectrum itself. For example, they assume that an unperturbed bound state appearing
directly at threshold cannot result in a bound state shifted below the threshold under the influence of the
interaction with the continuum. However, this assumption is contradicted by both of the physical models
considered in this paper, as well those studied in [16–18].

In the following study, we consider more closely the role that the bound state plays in relation to the
non-exponential decay in open quantum systems. In particular, we show that in the case that a bound state
approaches the energy continuum, there are two different temporal regions in which the leading term in the
power law expansion takes on different exponents; we term these the long time “near zone” and the long
time “far zone.”1 The power law decay in the near zone is enhanced relative to that in the far zone and the
time scale TQ that separates the two zones is inversely related to the gap between the bound state energy
and the continuum threshold. Hence as the bound state approaches the threshold the time scale TQ grows
larger, resulting in the amplified near zone decay extending over longer and longer time scales. Finally, in
the case that bound state is absorbed into the continuum at the threshold (meaning that the bound state is
destabilized as it vanishes from the diagonalized Hamiltonian spectrum) the time scale TQ diverges and
the near zone description becomes the fully asymptotic large time behavior.

On the other side of this transition, an anti-bound state forms in the second Riemann sheet, meanwhile
the long time far zone behavior is restored in the asymptotic limit. Hence, one could just as well view this
transition in reverse: an anti-bound state approaches the energy continuum, and the power law decay is
amplified at precisely the point that the anti-bound state touches the continuum edge before being ejected
from the continuum as a bound state. Indeed, the power law decay is easier to study in the latter case as
neither a bound nor a resonance appear in the spectrum (at least, for the model that we consider below),
leaving the power law as the most pronounced effect in the time evolution [16–18].

In Sect. 2 below we present our argument that the power law decay is amplified as the bound state ap-
proaches the continuum threshold (or the edge of the conduction band in solid state terms) and in Sect. 2.3

1 This naming convention is chosen in analogy with the spatial dependence in the description of the photon dressing for a two-
level atom; in that case there is the near zone or Van der Waals zone in which the photon cloud falls off as x−6 and the far
zone or Casimir-Polder zone in which it falls off as x−7. Finally there is a characteristic length separating these two zones,
fixed by the energy gap between the two levels [20].
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we discuss two cases for open quantum systems: in one case the bound state is prevented from reaching
the continuum threshold due to a divergent van Hove singularity in the density of states while in the other
the form of the interaction potential modifies the system properties and allows the bound state to reach the
continuum edge, resulting in a divergence for the timescale TQ. In Sect. 3 we look at two model realiza-
tions of these effects: in Sect. 3.1 we study an infinitely long quantum dot superlattice with a side-coupled
impurity (Model I); in this case the van Hove singularity prevents the bound state from destabilizing at the
continuum edge. Meanwhile in Sect. 3.2 we present the case of a similar model consisting of a semi-infinite
chain with an endpoint impurity (Model II); here the bound state may reach the continuum edge, resulting
in the divergence of the timescale TQ. We make our concluding remarks in Sect. 4.

2 Bound state de-stabilization and non-Markovian decay

Here we consider an open quantum system with a generic Hamiltonian of the form

H = εdd
†d +

∫
dk εk c†kck + g

∫
dk (vk c†kd + v∗k d†ck) (1)

consisting of a discrete state with creation operator d† coupled to the field operator c†k through the coupling
potential gvk. The discrete state has energy εd while the continuum is given by the dispersion εk, which
we suppose extends from a lower threshold ε−th to an upper threshold ε+th . Typically, in atomic, molecular,
and optical systems we will only have a lower threshold while ε+th is taken to infinity, while in condensed
matter systems both thresholds are finite as they delimit the edges of the conduction band.

For our purposes we tend to focus in this paper on studies of the time evolution when the discrete energy
εd is in the vicinity of the lower threshold ε−th . In this case, the upper threshold will generally have negligible
impact on the survival probability; hence, for our purposes in this section we might as well simply refer
to εth ≡ ε−th as ‘the system threshold’ and assume that ε+th is largely inconsequential (or simply taken to
infinity ε+th → ∞).

2.1 Generic model: discrete spectrum

We solve for the discrete spectrum of the full Hamiltonian by calculating the Green’s function for the
discrete state

Gd,d(z) = 〈d| 1
z − H

|d〉 =
1

z − εd − Σ(z)
≡ 1

η(z)
. (2)

Here Σ(z) is the self-energy function that determines how the perturbed system eigenvalues are shifted
from the unperturbed energy εd. More precisely we may write Σ(z) as

Σ(z) = Δ(z) + Λ(z) (3)

in which Δ(z) is analytic for all z, meanwhile Λ(z) represents the non-analytic component of Σ(z); specif-
ically Λ(z) is undefined along the branch cut associated with the continuum εk. Instead, one must define
this function on the two different Riemann sheets associated with the branch cut as ΛI,II(z) = Λ(z ± i0+).
Then the bound state solutions z̄B,i of the system, for example, are written as solutions of

z̄B,i − εd − ΣI(z̄B,i) = 0 (4)

in the first sheet.
Further, we have defined in Eq. (2) the dispersion function η(z) = z − εd − Σ(z), which yields the

discrete spectrum as the solutions of the equation η(z) = 0. For many simple systems we may explicitly
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obtain η(z), which then allows us to write the dispersion relation in polynomial form with the eigenvalues
given as the roots of the nth order polynomial equation

Pn(z̄i) ≡ S(z̄i)ηI(z̄i)ηII(z̄i) = 0, (5)

with the n resulting eigenvalues z̄i(εd, g) functions of the Hamiltonian parameters εd and g; for this paper
we will usually assume we may vary εd while g takes a fixed value and may be repressed in the notation
from this point forward. Note that S(z) in Eq. (5) is simply a z-dependent factor that might need to be
multiplied through to obtain a polynomial. Let us further assume that for values εd < εA there exists a
single bound state in the spectrum with eigenvalue z̄B(εd), which satisfies z̄B(εd) < εth (since we are
dealing with an open system, the other eigenvalues might be any combination of anti-bound states, resonant
states or anti-resonant states). However, if we increase the value of εd such that εd → εA then consequently
the bound state energy approaches the threshold z̄B → εth. At the precise value εd = εA the bound state
reaches the continuum threshold z̄B = εth and is absorbed [21]. Hence the bound state is no longer present
in the system for values εd ≥ εA (instead it becomes an anti-bound state for εd > εA). Our resulting
diagonalized Hamiltonian hence takes the form [22]

H =

⎧⎪⎨
⎪⎩

z̄Bd̃†Bd̃B +
∫

dk εk c̃†k c̃k εd < εA

∫
dk εk c̃†k c̃k εd ≥ εA

. (6)

Note that for our purposes in this paper, when we talk about ‘destabilization of the bound state,’ we are
referring to the transition from the first line to the second line of this equation.2 Finally, for ease in the
following calculation, we re-write the bound state eigenvalue in terms of ΔQ, the energy gap between the
bound state eigenvalue and the continuum threshold, as

z̄B(εd) = εth − ΔQ. (7)

2.2 Generic model: survival probability

Now we calculate the survival probability P (t) = |A(t)|2 in which

A(t) = 〈d|e−iHt|d〉 =
1

2πi

∫
Γ

dze−izt〈d| 1
z − H

|d〉 =
1

2πi

∫
Γ

dze−izt 1
ηI(z)

(8)

is the survival amplitude for the system in the prepared initial state |Ψ〉 = |d〉. Meanwhile, ηI(z) is the
dispersion function defined on the first Riemann sheet and which may be analytically continued into the
second sheet on the lower half of the complex energy plane through the branch cut associated with the
continuum εk. Finally, the contour Γ is the Bromwich path [23, 24] that extends just above the real axis in
the first sheet as [−∞ + iδ,∞+ iδ] as show in Fig. 1(a).

As a practical means for evaluating the survival amplitude we now deform the contour by the standard
approach, which is to drag the entire contour out to infinity in the lower half plane. In the case εd < εA then
we will pick up a pole associated with the discrete energy z̄B of the bound state located on the real axis
below the threshold εth. The remaining contour consists of a portion at infinity that gives no contribution
and a segment ΓI that runs inwards from infinity at εth − i∞ to the threshold εth. Meanwhile the segment
of the original contour that is initially located just above the continuum must be analytically continued into
the second sheet through the branch cut. As we pull the contour down, we generally pick up a pole for each
resonance state that might be present, as well as a second contour ΓII that extends from εth out to infinity
at εth − i∞ in the second sheet. Hence ultimately the contributions to the survival amplitude are

A(t) = AB(t) + Ath(t) + AR(t), (9)

2 Also note that other transitions might occur for values of εd much larger or much smaller than εA (appearance of resonance
state, etc.) however we primarily focus on the vicinity of the transition εd ∼ εA in this paper.
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Fig. 1 (online colour at: www.fp-journal.org) Complex z plane with the branch cut extending from the threshold εth

to ∞ along the real axis. A single bound state z̄B appears below the threshold. The Green line represents the (a) initial
contour (Bromwich path), and (b) deformed contour, with unbroken lines in the first sheet and dashed lines in the
second sheet.

in which AB(t) = R̃Be−iz̄Bt is the contribution from the single bound state with residue R̃B, AR(t) is the
sum of contributions of any resonance poles (for simplicity in our example, let us assume there are none)
and then the contribution from the two contours ΓI and ΓII take the form of the so-called ‘background
integral’

Ath(t) =
1

2πi

∫ εth

εth−i∞
dze−izt 1

ηI(z)
+

1
2πi

∫ εth−i∞

εth

dze−izt 1
ηII(z)

=
1

2πi

∫ εth−i∞

εth

dze−izt ηII(z) − ηI(z)
Pn(z)

S(z)

=
1
πi

∫ εth−i∞

εth

dze−izt Λ(z)
Pn(z)

S(z). (10)

Now, let us explicitly write the polynomial Pn(z) in terms of the single bound state as

Pn(z) = (z − z̄B) Rn−1(z) (11)

with Rn−1(z) an n − 1 order polynomial. Performing a change of the integration variable according to
z = εth − iy we may write the integral Eq. (10) as

Ath(t) = −2ie−iεtht

∫ ∞

0

dy e−yt Λ(εth − iy)
(ΔQ − iy)Rn−1(εth − iy)

. (12)

From this point, we make a final coordinate transformation s = yt and re-write the polynomial in the
denominator as

R̄n−1(
s

t
) = Rn−1(εth − i

s

t
) = r̃0 + r̃1

s

t
+ r̃2

s2

t2
+ . . . (13)

Finally we obtain the background integral in the standard form as

Ath(t) =
2e−iεtht

it

∫ ∞

0

ds e−s Λ(εth − i s
t )

ΔQr̃0 + l1
s
t + l2

s2

t2 + . . .
. (14)

in terms of a new polynomial Ln(s/t) = l0 + sl1/t + . . . with l0 = ΔQr̃0.
Having obtained Eq. (14), we are now in a position to make some comments about the non-Markovian

decay. First, note that for small t, the rightmost terms in the denominator of this integral will make the
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greatest contribution to the integration. However, we are interested in the long time effects; let us first
focus on the temporal region

l2
l1

� t � l1
ΔQr̃0

. (15)

When this condition is satisfied, the second term in the denominator of Eq. (14) will dominate the time
evolution. We may expand the denominator accordingly in order to write the approximation

Ath(t) ≈ ANZ
th (t) = − 2e−iεtht

il1

∫ ∞

τ=1

F (τ ′; t)dτ ′ (16)

in which we have defined the function

F (τ ; t) =
∫ ∞

0

ds e−sτΛ(εth − i
s

t
), (17)

which will appear again momentarily. The label “NZ” in the above equation stands for long time near zone.
Now let us consider the fully asymptotic case

l1
ΔQr̃0

� t. (18)

Here the first term in the denominator of Eq. (14) will dominate the integration, resulting in a new approx-
imation in the form

Ath(t) ≈ AFZ
th (t) =

2ie−iεtht

tΔQr̃0
F (τ = 1; t). (19)

for the long time far zone.
Now let us compare the approximations in the two different zones in Eqs. (16) and (19). Notice that if

we assume

lim
t→∞

∫ ∞

τ=1

F (τ ′; t)dτ ′ ∼ lim
t→∞ F (τ = 1; t). (20)

then the two zones obey differing power laws AFZ
th (t) ∼ 1

t ANZ
th (t), which in terms of the survival probability

itself yields

P FZ
th (t) ∼ 1

t2
P NZ

th (t) (t � 1) . (21)

Hence we find a relatively amplified power law decay in the near zone in comparison to the far zone.
However, if we consider the case that ΔQ = 0 such that the bound state is absorbed into the continuum,
then the time scale TQ ≡ l1/ΔQr̃0 in Eq. (18) diverges, and the relatively amplified near zone decay
becomes the full asymptotic behavior of the system (that this is true is fairly easy to see from Eq. (14) as
well).

2.3 Comment on bound state de-stablization in OQS

In this section we comment on the behavior of bound states in open quantum systems and the de-stabili-
zation process itself. In the previous section we realized a process by which amplification of the long time
power law decay may occur in such systems as the bound state is absorbed into the continuum. Here let us
remark on the circumstances under which such a process occurs.
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The key point is that this behavior is largely determined by the form of the non-analytic portion of the
self-energy Λ(z) from Eq. (3), which contains the branch cut associated with the continuum. Hence in the
single band case when the bound state is absorbed at the edge of the continuum we have Λ(z̄B = εth) = 0.
Now the form of Λ(z) in turn is largely fixed by two pieces from the Hamiltonian: (A) the interaction
potential vk, and (B) the continuum density of states ρ(εk) (proportional in the 1-D case to the derivative
of the inverted dispersion relation ∂k/∂εk). As shown in [25], in the case

lim
ε→εth

|vk(ε)|2ρ(ε) → ∞, (22)

then the condition Λ(εth) = 0 can never be satisfied in Eq. (4), which prevents the bound state from ever
‘touching’ the continuum and hence de-stabilization never occurs. Instead, as εd � εth then the bound state
will become ‘stuck’ on the outer edge of the continuum, and will only be able to approach the threshold
asymptotically (we refer to these type of bound states as persistent bound states as in [25]).

On the other hand, if we consider a system in which
[|vk(ε)|2ρ(ε)

]
ε=εth

= 0 (23)

is satisfied, then the condition Λ(εth) = 0 may be satisfied for some choice of system parameters at which
the bound state will destabilize through absorption into the continuum, ultimately producing an anti-bound
state in the second Riemann sheet (or conversely, an anti-bound state may approach the continuum before
being ejected as a bound state in the first sheet) [21]. This is equivalent to the localized to virtual state
transition studied in [26].

Below we will study two models that provide examples of these two cases. In Sect. 3.1 we will consider
an infinite chain with a side-coupled impurity, which satisfies the relation in Eq. (22). As a result we find
that the persistent bound state may move closer and closer to the band edge, but the condition ΔQ = 0
cannot be satisfied for finite values of the system parameters. Hence the time scale in Eq. (18) never
approaches infinity and the long time far zone behavior can never be entirely eliminated from the system.

However, in Sect. 3.2 we study a semi-infinite chain with an endpoint impurity, which satisfies instead
the relation Eq. (23). In this case, it is possible to vary the system parameters such that ΔQ = 0 and then
the amplified power law decay associated with the long time near zone will dominate the long time system
dynamics even in the asymptotic limit. As a further point, both bound states and resonance states may be
eliminated from the system entirely in this model for a wide range of parameter values (that includes the
special point ΔQ = 0), resulting in non-exponential evolution on all time scales.

3 Model realizations of amplified non-Markovian decay

We now present realizations of the non-Markovian amplification effect relying on two variations of tight-
binding chains with coupled impurity sites. Our two models may be compactly written as

H = εdd
†d − t

2

∑
n

(c†ncn+1 + c†n+1cn) + εμ

∑
n

c†ncn − g (c†n0
d + d†cn0) (24)

in which cn and d are the annihilation operators along the chain and at the impurity site, respectively, while
t sets the tunneling strength along the chain and g gives the coupling strength to the impurity. Meanwhile
εμ gives the chemical potential at each site along the chain and εd is the impurity site energy. We fix the
energy scale according to units t = 1 and set the origin as εμ = 0. Note that the creation operator c†n0

is
the creation operator for the site coupled to the impurity (n0 will be specified below).

For Model I, we have the infinite geometry chain with N + 1 sites, indexed as n = −N
2 , . . . , N

2 , with
periodic boundary conditions and an impurity side-coupled at the middle of the chain n0 = 0 as shown in
Fig. 2(a). For Model II, we have the semi-infinite geometry chain with N sites, indexed as n = 1, . . . , N ,
with open boundary conditions and an end-point impurity attached at the n0 = 1 site as shown in Fig. 2(b).
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Fig. 2 (online colour at: www.fp-journal.org) (a) Model I: infinite geometry with side-coupled impurity, and (b)
Model II: semi-infinite geometry with endpoint impurity.

We visualize that these models may be physically realized as either a semiconductor superlattice as
in [27] or a series of coupled single mode waveguides as in [16].

3.1 Model I: persistent bound state supported at threshold by DOS divergence

Let us now consider Model I, the infinite-chain realization of the Hamiltonian in Eq. (24). After performing
a Fourier transform on the chain sites cn and taking the limit N → ∞ we may write

H = εdd
†d +

1
2

∫ π

−π

dk εk c†kck + g

∫ π

−π

vkdk (c†kd + d†ck) (25)

in which the dispersion for the diagonalized ck modes is given by εk = − cos k and the potential vk =
−1/

√
2π is simply a constant. We note immediately the form of the normalized density of states for our

dispersion takes the form

ρ(εk) =
1
π

1√
1 − ε2k

∝ ∂k

∂εk
. (26)

with divergences at either band edge εk = ±1. Hence at either band edge the condition

lim
ε→±1

|vk(ε)|2ρ(ε) → ∞ (27)

is satisfied, which is the equivalent of the condition previously appearing in Eq. (22). As a result, the bound
state absorption will never be realized in this system, and the amplification of the power law decay will
only occur up to a certain timescale.

3.1.1 Model I: spectrum

The discrete spectrum of Model I has been previously studied in [26–29]. As presented in [27], the spectrum
may be obtained as the poles of the Green’s function for the impurity site, which after re-summation appears
as

Gd,d(z) = 〈d| 1
z − H

|d〉 =
1

z − εd − Σ(z)
≡ 1

η(z)
(28)

with the self-energy function Σ(z) given by

Σ(z) ≡ g2

∫ |vk|2
z − εk

dk =
g2

√
z2 − 1

. (29)

Note there is only one term in the self-energy, such that Λ(ε) = g2/
√

z2 − 1 and Δ(z) = 0. Further we
see immediately that Λ(±1) = 0 can never be satisfied, as a direct result of Eq. (27).

The discrete spectrum is now fixed by the poles of the Green’s function as the solutions to η(z) = 0 or

z − εd =
g2

√
z2 − 1

. (30)
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By squaring Eq. (30) we immediately obtain an equivalent quartic polynomial equation for the spectrum.
We plot the resulting real part of the spectrum as a function of εd in Fig. 3(a), in which solid lines represent
the two bound state solutions appearing in the first Riemann sheet and dashed lines give the two other
solutions appearing in the second sheet.
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Fig. 3 (online colour at: www.fp-journal.org) (a) Discrete spectrum for Model I as a function of εd with g = 0.4, and
(b) close-up in the vicinity of the lower band edge. The two bound state solutions z̄± are both shown as full, unbroken
(blue) curves while anti-bound states and resonance states in the second Riemann sheet are shown with dotted curves.
The lower and upper band edges at y = ±1 as well as the unperturbed impurity energy y = εd are shown with
unbroken (black) lines. The values for ±εγ where the resonance state pair forms are also indicated (see Eq. (31) for
approximate value).

For our purposes, let us focus on the region of the spectrum in the lower half of Fig. 3(a), in which the
impurity energy lies fairly close to the lower band edge εd ∼ −1. We show this region in greater detail
in Fig. 3(b). For the region in which εd < −εγ (the approximate value of εγ is given momentarily), the
spectrum consists of two bound states, one appearing in the lower half of the spectrum with discrete energy
z̄− ∼ εd, and a second on the positive half of the spectrum lying close to the upper band edge z̄+ ∼ 1,
as well as two anti-bound states in the second Riemann sheet. When we calculate the survival probability
here, not surprisingly we find that the lower bound state z̄− dominates the time evolution while the upper
bound state has a largely negligible effect.

If we choose to gradually increase the value of the parameter εd, we find that eventually two new features
occur in the spectrum. First, at a specific value of the impurity energy εd = −εγ , indicated in Fig 3, the
two anti-bound states collide on the second sheet to form a resonance, anti-resonance pair3 with complex
conjugate eigenvalues. This complex conjugate pair persists for all values |εd| < εγ with the approximate
value

εγ = 1 +
3
2
g4/3 + O(g8/3) (31)

obtained in [27] (a plot of the decay width may also be found in that paper). Second, as we continue to
increase εd such that it exceeds values on the order of εd � −1 + g4/3, the lower bound state takes on
a value z̄− � −1 as it gets ‘stuck’ on the lower band edge, forming a persistent bound state.4 That this
happens can be seen intuitively from Eq. (30); if z2 − 1 ∼ g4 is satisfied in the root on the RHS, we
see that both sides of the equation may become order unity. More precisely, by following the perturbative
calculation detailed in [25] we obtain

z̄− = −1 − 1
2(1 + εd)2

g4 + O(g8)

≡ −1 − Δ̃Q + O(g8), (32)

3 The resonance, anti-resonance pair forms at a real-valued exceptional point [30–32], a process which is described in greater
detail in [33]; for a clever experimental demonstration of this process applying simple LCR circuits, see [34].

4 The transition to the persistent bound state appearing at the band edge is described in detail in [25].
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for all values εd � −1. Notice here that z̄− never actually reaches to the band edge at −1 except in
the limit εd → ∞ (including higher order terms would be consistent with this statement). Hence, for the
present model, the bound state is always maintained, hovering just outside the edge of the continuum, as
we predicted from the condition reported in Eq. (27). We have also defined Δ̃Q here as the gap at lowest
order between the bound state and the lower band edge. As we evaluate the survival probability below,
we find that the background integral naturally appears written in terms of Δ̃Q, rendering unnecessary an
explicit factorization of the polynomial dispersion in terms of the bound state eigenvalue (as performed
previously in Sect. 2.2).

3.1.2 Model I: Survival probability

We now calculate the survival probability along the lines of our previous calculation in Sect. 2.2. Following
the steps leading from Eq. (8) to Eq. (10) we obtain an expression for the background integral contribution
to the survival amplitude for Model I as

Ath(t) =
g2

πi

∫ −1−i∞

−1

dz e−izt

√
z2 − 1

(z − εd)2(z2 − 1) − g4
. (33)

Next we make the transformation z = −1 − iy in which y runs from 0 to ∞, followed by the second
transformation s = yt in order to obtain

Ath(t) =
ieit

πg2t2

∫ ∞

0

ds e−s

√
s2 − 2its

1 − is
TQ

t + s2 TQT2
t2 + is3 TQT 2

3
t3 − s4 TQT 3

4
t4

. (34)

Here we have defined the key time-scale

TQ ≡ 2(1 + εd)2

g4
=

1
Δ̃Q

(35)

as well as T2 ≡ (5 + εd)/2(1 + εd), T3 =
√

2 + εd/(1 + εd), and T4 ≡ (2(1 + εd))
−2/3. Now in the case

of T2 � t � TQ, we have

ANZ
th (t) ≈ − eit

πg2tTQ

∫ ∞

0

ds e−s

√
s2 − 2its

s

= − eit

πg2tTQ

∫ ∞

τ=1

F̄
(
τ ′, t

)
dτ ′

=
g2eit

2
√

π(1 + εd)2t
Ψ(−1/2, 0;−2it) (36)

in which Ψ(a, c; z) is the confluent hypergeometric function and

F̄ (τ ; t) ≡
∫ ∞

0

ds e−sτ
√

s2 − 2its =
ite−itτK1(−itτ)

τ
, (37)

with K1(x) the modified Bessel function. As we generally expect the condition T2 � t � TQ will apply
for t � 1 we apply the asymptotic expansion for the confluent hypergeometric function (Ψ(a, c; z) → z−a

for z → ∞) to obtain

ANZ
th (t) ≈ e3πi/4g2eit

√
2π(1 + εd)2t1/2

. (38)
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Hence we find the survival probability goes like P NZ(t) ∼ t−1 in the long time near zone. Meanwhile
from Eq. (34) in the long time far zone t � TQ we utilize the asymptotic behavior K1(x) → √

π/2xe−x

to obtain

AFZ
th (t) ≈ − ieit

πg2t2
F̄ (τ ; t)

= − 1
πg2t

K1(−it), (39)

which in the asymptotic limit gives

AFZ
th (t) ≈ eπi/4eit

√
2πg2t3/2

. (40)
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Fig. 4 (online colour at: www.fp-journal.org) Numerical re-
sults for the time evolution P (t) for Model I for the three
cases.

Using Eqs. (38) and (40) to calculate the survival probabilities P NZ
th = |ANZ

th (t)| ∼ t−1 and P FZ
th =

|AFZ
th (t)| ∼ t−3, we immediately verify that the predicted relation Eq. (21) holds true for the present model.

Unfortunately however, the fact that both bound states and a resonant state are present in the system for the
parameter choices we are interested in (i.e. ΔQ small) results in a decay profile in which it is difficult to
clearly distinguish the time evolution behavior in the near zone; this is demonstrated by numerical results in
Fig. 4. For the case g = 0.1, εd = −0.5 (large red diamonds) we see that the exponential decay dominates
the visible time evolution up to about t < 20, then the bound state is the dominant feature around t > 50.
In the approximate region 20 < t < 50 the evolution evolves according to interference between these
two terms, resulting in an oscillation pattern. Then for g = 0.2, εd = −0.5 (blue dots) the decay width
(proportional to g2) is smaller resulting in an elongated timescale t < 60 for the exponential decay. Finally
for g = 0.1, εd = −0.5 the decay width is even smaller, resulting in an exponential decay that outlives the
plot parameters.

We see that the power law decay effects are not apparent in any of these plots. Fortunately, we may
overcome this difficulty for certain parameter choices in the case of Model II.

3.2 Model II: bound state absorbed into continuum

We now turn to the Model II realization of the Hamiltonian Eq. (24), consisting of a semi-infinite-chain
with an endpoint impurity. We perform a half-range Fourier transform on the chain sites cn and take the
limit N → ∞ in order to write

H = εdd
†d +

1
2

∫ π

0

dk εk c†kck + g

∫ π

0

vkdk (c†kd + d†ck) (41)
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with the same tight-binding dispersion εk = − cos k as for Model I, hence the density of states takes
precisely the same form as Eq. (26), including the square root form of the divergences at either band edge
εk = ±1.

Meanwhile the potential takes the form vk = − sink/
√

π, which introduces some quite different prop-
erties into the system in comparison to Model I. The primary point is that at either band edge the condition

[|vk(ε)|2ρ(ε)
]
ε=±1

= 0 (42)

is satisfied, which is the equivalent of the condition Eq. (23) that allows for a bound state to become
destabilized as it touches either edge of the conduction band at specific parameter values. As we study the
spectrum in greater detail in the next section we will also present the precise value εd = εA where this
destabilization occurs (assuming a fixed value of g).

3.2.1 Model II: spectrum

The discrete spectrum and the power law decay for Model II has been studied previously in [16] for the
case of εd = 0 (all sites with equal energy) while only the coupling to the endpoint may be varied. For
our purposes of illustrating a simple generic feature we will focus instead on the particular case of a fixed
endpoint coupling (g = 1/2 in Fig. 2 (b)) while the impurity energy εd may be varied. The power law
decay has been studied in models similar to these in [17,18,24]. Just as for Model I, we obtain the discrete
spectrum for the present model from the Green’s function at the endpoint impurity site as in Eq. (28). And
as in Eq. (29), it is a straight-forward exercise to obtain the self-energy function for arbitrary g as

Σ(z) = 2g2
(
z −

√
z2 − 1

)
(43)

for the semi-infinite chain model, in which it is now possible for Λ(±1) = 0 to be satisfied for Λ(z) =
2g2

√
z2 − 1.
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Fig. 5 (online colour at: www.fp-journal.org) (a) Discrete spectrum for Model II as a function of εd with g = 1/2
(linear case). The lower and upper band edges as well the unperturbed energy y = εd are all shown with solid black
lines. The bound state in the first sheet is shown by a full, unbroken (blue) curve while the anti-bound state in the
second sheet is represented with a (blue) dotted curve. Vertical dashed lines represent the point εd = ±1/2 at which
the bound state brushes the continuum to form an anti-bound state (or vice versa). (b) Numerical results for the time
evolution P (t) for Model II for two cases: εd = −0.4 (large red diamonds) along with the red line representing the far
zone evolution P F Z(t) ∼ t−3, and εd = −0.5 (small blue dots) along with the blue line representing the near zone
evolution P NZ(t) ∼ t−1.

The discrete spectrum is obtained from η(z) = z − εd − Σ(z) = 0 as

z − εd =
1
2

(
z −

√
z2 − 1

)
(44)
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for the specific case g = 1/2. In the more general case of arbitrary g, we would obtain an equivalent
quadratic polynomial after squaring out the root on the RHS of this equation. However, for our present
case we instead find a simple linear equation. Before presenting the solution, we first note there is a special
point in parameter space associated with the values z = ±1 at which the root in Eq. (44) vanishes. What
happens at this special point is that a bound state appearing in the first Riemann sheet touches the edge
of the continuum, before giving rise to an anti-bound state in the second sheet (or vice-versa) [18, 21].
Plugging the values z = ±1 into Eq. (44) yields εd = ±1/2 as the precise points in parameter space where
these transitions occur. It can be further demonstrated that for |εd| > 1/2 there is exactly one bound state
present in the system, and for |εd| < 1/2 there is exactly one anti-bound state. In either case, the linear
dispersion yields the single solution as

z̄L(εd) = εd +
1

4εd
, (45)

which holds for the bound and anti-bound state alike. We plot the spectrum as a function of εd in the
Fig. 5(a), in which unbroken curves show the bound state portion of the spectrum, while the dotted curves
show the anti-bound state. It’s interesting to note that in the anti-bound case |εd| < 1/2, there is neither
a bound state nor a resonance state in the system, hence the time evolution is non-exponential on all time
scales [16, 17].

3.2.2 Model II: Survival probability

Again we write the survival probability for Model II by following the standard method from Sect. 2.2 to
obtain

Ath(t) = − 1
2πiεd

∫ −1−i∞

−1

dz e−izt

√
z2 − 1

z − z̄L

=
eit

2πiεdΔQt2

∫ ∞

0

ds e−s

√
s2 − 2its

1 + is
TQ

t

, (46)

following the usual transformations z = −1 − iy then s = yt. Here ΔQ ≡ z̄L + 1 is the gap between the
bound state and the lower band edge at z = −1 and TQ = (ΔQ)−1 is the usual time scale dividing the
near zone and far zone. In the long time near zone 1 � t � TQ we have

ANZ
th (t) ≈ − ieit

2πiεdt

∫ ∞

τ=1

F̄
(
τ ′, t

)
dτ ′

= − eit

2
√

πεdt
Ψ(−1/2, 0;−2it)

≈ − e3πi/4eit

√
2πεdt1/2

(47)

with the usual t−1/2 behavior. Meanwhile as we turn to the long time far zone in the fully asymptotic case
t � TQ, we find from Eq. (46) that

AFZ
th (t) ≈ − 1

2πεdΔQt
K1(−it)

≈ − eπi/4eit

2
√

2πεdΔQt3/2
. (48)

Clearly we see that in the case that the bound state touches the continuum at εd = 1/2 (ΔQ = 0), then
TQ → ∞ and the long time near zone gives the dominant behavior even in the asymptotic limit.
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We illustrate this by numerical results for P (t) in Fig. 5(b); in the case that εd = −0.4 (red diamonds),
there is no bound state present in the system and we clearly observe the transition from the near zone with
slope coefficient ∼ −1 (blue line) and the far zone with coefficient ∼ −3 (red line). Meanwhile for the
value εd = −0.5 (small blue dots) we have realized the case ΔQ = 0, hence the far zone time scale has
been pushed out and the near zone behavior dominates the evolution even on larger time scales.

4 Conclusion

In this paper we have demonstrated in simple terms that there is some connection between the proximity of
a bound state to threshold and the precise details of the non-exponential decay of the survival probability
at long times in open quantum systems. This connection is encapsulated in Eq. (14) in which it is clear that
closing the gap ΔQ between the threshold and bound state should have some effect on the long time power
law decay (most likely, it will be enhanced). Further the existence of the gap gives rise to a time scale that
divides the long time system dynamics into two zones: the long time near zone and the long time far zone.
The question of how the power law decay will compare in these two zones largely depends on whether the
condition in Eq. (20) holds.

In Sect. 3 we explored this question for two specific nearest neighbor models with attached impurity
levels. In these two cases Eq. (20) indeed held, and hence the power law decay was enhanced in the
long time near zone in comparison to the far zone according to P FZ ∼ 1

t2 P NZ as predicted in Eq. (21).
Further, for Model I the divergent van Hove singularity in the density of states at the edge of the continuum
prevented the bound state from being able to reach the band edge and closing the gap ΔQ (that is to say,
there was a persistent bound state as defined in [25]). Hence one could only approach the regime in which
the near zone dominates the power law decay for very large times in the limit εd → ∞, in which case
the decay contribution in Eq. (38) would vanish anyways. However, for Model II the precise form of the
interaction potential essentially cancels out the divergence from the density of states, which results in a
spectrum in which it is possible to close the gap ΔQ = 0 for precise values of the system parameters.
Doing so gives rise to a situation where the enhanced power law decay associated with the long time near
zone pushes out the far zone behavior entirely and dominates the time evolution in the fully asymptotic
limit.

Interestingly, it has also been demonstrated in open quantum systems that the same crossover from a
bound state to an anti-bound state at the continuum threshold gives rise to a maximum in the local density
of states response function at the impurity site [26]. Indeed, this result is closely related to the amplification
of the power law decay at threshold [18].

However, the precise details of the transitions in the asymptotic decay behaviors for a generic system
remains an open question. On the one hand, the t−3 behavior in the far zone appears to be a rather generic
feature [2]. On the other hand, one would hope to obtain a more general understanding of the near zone
behavior. One might gain insight into this question by considering what more general statements might be
made about the condition expressed in Eq. (20) and under what conditions one might expect this relation to
hold. One interesting proposal would be to study the non-exponential decay dynamics in a two-dimensional
system, in which the inverse square root singularities ubiquitous in one-dimensional systems would be
replaced with logarithmic divergences. This will be a future direction of study.

Finally for completeness we note that even the typical exponential decay itself experiences anomalous
behavior in the vicinity of the threshold. As has been pointed out in quite different physical contexts,
Fermi’s golden rule, which predicts that the decay rate to lowest order approximation is proportional to the
density of states, breaks down in the vicinity of a singularity in the density of states [25, 27, 35].
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[18] A. D. Dente, R. A. Bustos-Marùn, and H. M. Pastawski, Phys. Rev. A 78, 062116 (2008).
[19] V. Dinu, A. Jensen, and G. Nenciu, J. Math. Phys. 50, 013516 (2009).
[20] G. Compagno, R. Passante, and F. Persico, Atom-Field Interactions and Dressed Atoms, (Cambridge University

Press, Cambridge, 1995).
[21] E. N. Economou, Green’s Functions in Quantum Physics, 2nd edition (Springer-Verlag, Berlin, 1983).
[22] G. Ordonez, T. Petrosky, and I. Prigogine, Phys. Rev. A 63, 052106 (2001).
[23] S. Longhi, Phys. Rev. B 80, 165125 (2009).
[24] S. Longhi, Phys. Rev. A 74, 063826 (2006).
[25] S. Garmon, H. Nakamura, N. Hatano, and T. Petrosky, Phys. Rev. B. 80, 115318 (2009).
[26] R. A. Bustos-Marún, E. A. Coronado, and H. M. Pastawski, Phys. Rev. B 82, 035434 (2010).
[27] S. Tanaka, S. Garmon, and T. Petrosky, Phys. Rev. B 73, 115340 (2006).
[28] N. Hatano, H. Nakamura, K. Sasada, and T. Petrosky, Prog. Theor. Phys. 119, 187 (2009).
[29] G. D. Mahan, Many Particle Physics, 2nd edition (Plenum Press, New York, 1990), pp. 283–285.
[30] T. Kato, Perturbation Theory for Linear Operators, (Springer-Verlag, Berlin, 1980), pp. 62–66.
[31] W. D. Heiss and H. L. Harney, Eur. Phys. J. D 17, 149 (2001).
[32] N. Moiseyev and S. Friedland, Phys. Rev. A 22, 618 (1980).
[33] S. Garmon, I. Rotter, N. Hatano, and D. Segal, arXiv:1107.1759, to be published.
[34] J. Schindler et al., Phys. Rev. A 84, 040101(R) (2011).
[35] T. Petrosky, C.-O. Ting, and S. Garmon, Phys. Rev. Lett. 94, 043601 (2005).

www.fp-journal.org © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


