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Thermal conductance in solid-molecule-solid junctions is studied within Langevin-type classical
molecular dynamics simulations. The solids attached at the two ends, characterized by phonon
bands mismatching the molecular vibrational window, are simulated using colored thermal noises
with analytic correlation functions. We find that the dissimilarity in the vibrational spectra of the
molecule and the interfacing materials crucially controls both the magnitude and the chain-length
dependence of the heat current considering both harmonic and anharmonic molecules. By using
reservoirs with distinct spectral functions, we also demonstrate that one can optimize the thermal
rectifying �diodelike� properties of the junction. © 2010 American Institute of Physics.
�doi:10.1063/1.3475927�

I. INTRODUCTION

The process of heat conduction at the nanoscale natu-
rally lends itself as a useful test bed for exploring fundamen-
tal topics in nonequilibrium thermodynamics and quantum
mechanics: the role of many-body interactions in determin-
ing transport mechanisms,1 the effect of the structure
dimensionality,2 and the relevance of quantum effects at the
nanoscale.3 Practically, controlling heat generation and ther-
mal conduction in devices is a high-priority issue in
electronics,4 in particular, in molecular-level devices such as
solid-molecule-solid junctions, self-assembled monolayers,
and thin films.5

There are two types of thermal energy carriers in solids:
electrons and phonons. While phonons dominate the thermal
conduction properties of insulators and semiconductors, elec-
trons predominantly control heat transfer in metals. How-
ever, considering metal-molecule-metal tunneling junctions
with a poorly conducting molecule such as a hydrocarbon
chain,6 one can safely assume that since electron transmis-
sion is largely suppressed, only the structure vibrations are
responsible for heat conduction.

Recent experiments on heat transfer in molecular
junctions6,7 and solid-molecule-liquid interfaces8 have ex-
plored the underlying transport mechanisms and exposed the
crucial role of the interface at the nanoscale. In these experi-
ments the molecular chain, e.g., a hydrocarbon, typically in-
cludes N�5–10 repeating units. Thus, unlike the mesos-
copic limit, at the nanoscale the interface dramatically affects
the dynamics.9–13 Numerical simulations and theoretical
studies have indeed manifested the influential role of the
contacts �solids� on heat conduction in harmonic14–16 and
anharmonic lattices.17,18 While these studies have typically
focused on the asymptotic long-chain behavior, our objective
here is to systematically study, through classical molecular
dynamics �MD� simulations, the effect of the solids’ spectral

properties on thermal transport in short to intermediate size
molecular junctions that are of experimental relevance. Spe-
cifically, it is of interest to simulate situations where there is
a mismatch in the vibrational spectra of the attached solids
and the molecule.6,7 A schematic illustration of this setup is
presented in Fig. 1. In what follows we refer to the solids
attached to the molecular object as either thermal reservoirs,
heat baths, or contacts.

Comprising the solid interface in a molecular dynamics
simulation can be done either by explicitly including in the
model Hamiltonian a few atomic layers of the substrate,12 or
by performing a Langevin-type dynamics, using the general-
ized Langevin equation �GLE�.19 Here, the spectral proper-
ties of the reservoirs are incorporated into frequency depen-
dent damping terms, introducing memory effects, resulting in
a non-Markovian dynamics.20,21

In a recent paper22 we have followed the latter method,
and investigated the heat conduction characteristics of mo-
lecular chains connected to non-Markovian �colored� reser-
voirs. However, only the simplified, easy to simulate,
Ornstein–Uhlenbeck �OU� noise23 has been employed: By
introducing an auxiliary variable, the GLE with the OU noise
can be simulated by a Markovian Langevin equation. Never-
theless, for simulating real solids with non-Ohmic phonon
models, more flexible memory functions should be intro-
duced, with �possibly� unknown Langevin-type dynamics.

In the present work we study the thermal conduction
properties of molecular structures attached to non-Markovian
reservoirs, by directly propagating the GLE, without reduc-
ing it to a Markovian Langevin equation. In particular, we
numerically simulate the heat current through homogeneous
chains of various sizes, characterizing the attached reservoirs
by analytic phononic spectral functions with an adjustable
spectral window. This enables us to analyze the role of the
mismatch of the molecule-solids vibrational spectra on the
junction thermal conductance and to consider resonance ef-a�Electronic mail: dsegal@chem.utoronto.ca.
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fects. Considering either harmonic or anharmonic internal
molecular interactions, we find that the spectral properties of
the reservoirs play a decisive role in determining the length
dependence of the heat current. Thus, the thermal conduc-
tance of small nanojunctions should not be considered as a
molecular property, rather its value reflects the hybrid object
as a whole. By manipulating the dissimilarity in the vibra-
tional spectra of the interfacing materials, introducing asym-
metry, we also demonstrate that one can control the rectify-
ing �diodelike� properties of anharmonic junctions.

This paper is organized as follows. Section II presents
the model Hamiltonian and the equations of motion. Section
III A describes the propagation scheme for a general time
correlation function of the reservoirs fluctuations. In Sec.
III B a simplified method for a specific, exponentially
damped harmonic function is discussed. Section IV pre-
sented results considering solids with either similar or dis-
similar vibrational spectra. Section V concludes.

II. MODEL

We consider a homogeneous molecule connecting two
macroscopic solids, L and R, which are held at fixed tem-
peratures TL and TR, respectively, �T=TL−TR. In steady
state there is a constant heat current between these two heat
reservoirs through the molecule. A schematic representation
of the model is depicted in Fig. 1. The Hamiltonian of this
system is a sum of the molecular Hamiltonian, HM, the
Hamiltonian of the solid baths, Hn; n=L ,R, and molecule-
bath interaction terms, HML and HMR. We model the mol-
ecule as a chain of one-dimensional �1D� N atoms, assuming
a uniform system

HM = �
k=0

N � pk
2

2m
+ V�xk+1 − xk�	 . �1�

xk is the displacement from the equilibrium position of the
kth particle of mass m and pk is the particle momentum. The
first �k=0� and the last �k=N+1� beads are the edge atoms of
the contacts. A nearest-neighbors anharmonic force field is
assumed for the interparticle potential energy V. The reser-

voirs are represented as collection of independent harmonic
oscillators at thermal equilibrium
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Only the end atoms of the molecular chain, k=1,N, are
coupled to the solids, adopting a bilinear molecule-bath
interactions21

HML = �
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The classical dynamics can be analytically represented in the
form of a generalized Langevin equation19

ẋk =
pk

m
, k = 1,2, . . . N ,

ṗk = −
�HM

�xk
, k = 2,3, . . . ,N − 1,

�4�

ṗ1 = −
�HM

�x1
− �

0

t

dt��L�t − t��p1�t�� + m�L�t� ,

ṗN = −
�HM

�xN
− �

0

t

dt��R�t − t��pN�t�� + m�R�t� ,

where the effect of the thermal environments appears in
Gaussian noise terms �n; �n=L ,R� with zero mean, and
damping terms �friction� �n�t�, satisfying the classical
fluctuation-dissipation �FD� relation


�n� = 0; 
�n�t��n��t��� =
kBTn

m
�n��t − t����n,n�. �5�

Here kB is the Boltzmann constant, and the memory-damping

kernel is, e.g., at the L end, �L�t�= 1
m�l

g1,l
2

ml�l
2 cos��lt�. It is re-

lated to the spectral function JL���= �
2 �l

g1,l
2

ml�l
���−�l�

through

��t� =
2

m�
�

0

�

d�
J���

�
cos��t� �6�

or in frequency domain, J���=m�����, where, ����
=�0

���t�cos��t�dt. For the Ohmic �or Markovian� case, ��t�
=2���t� and J���=m��. Real environments are typically
characterized by high frequency cutoff functions.

In what follows we consider a non-Ohmic form for the
damping term ��t�, and explain how we propagate the equa-
tions of motion �4� to yield the positions and velocities of all
particles. The heat flux can be calculated from the trajectory
using24

Spectral
density

ωL solid R solid

Molecular
modes

TL TR

R solidL solid

molecule

(a)

(b)

FIG. 1. �a� A schematic representation of our model, a 1D homogeneous
molecular chain with two heat baths �solids� attached to its ends. �b� An
illustration of the vibrational spectra of the interfacing solids and the inter-
located molecule.
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J =
1

2�N − 1� �k=1

N−1


�vk + vk+1�F�xk+1 − xk�� , �7�

where F�r�=−�HM�r� /�r, vk= pk /m, and we average over
time and ensemble after steady state is reached. We also
calculate the junction thermal conductance K, defined as the
ratio between the steady state heat current and the tempera-
ture difference

K � J/�T . �8�

III. PROPAGATION SCHEME

A. Method

In order to study the dynamics under a general temporal
correlation function ��t�, the corresponding Gaussian process

� has to be generated. For particular processes, e.g., the OU
and Wiener �W� processes, the noise obeys a Langevin equa-
tion with a linear, Gaussian, white, noise term. Integration of
this linear equation will generate the random processes with
the particular time correlation. Such a method was followed
in Ref. 22, simulating the conduction properties of molecular
chains coupled to OU reservoirs. Here, in contrast, we are
interested in Gaussian noises with a general temporal corre-
lation function ��t�, aiming in simulating realistic solids with
certain phononic bands. In such cases a Markovian
Langevin-like dynamics for the colored noise is not always
known �or does not exist�, and therefore, a more general
algorithm that only depends on the knowledge of the tempo-
ral correlation should be adopted.25–27 In such a scheme we
first discretize the time into M intervals with a time step �t,
and construct a 2M 	2M circulant matrix

Aij = �
kBTn

m
�n��ti − tj�� when �i − j� 
 M

kBTn

m
�n��2�M − 1��t − �ti − tj��� when �i − j� � M,i, j = 1,2, . . . ,2�M − 1� .� �9�

The matrix A can be diagonalized by a discrete Fourier trans-
form matrix F, A=F�F†, where � has positive entries for a
well behaved function �n. It can be shown25 that the real and
the imaginary parts of F�1/2�x+ iy� are both random vectors
with the autocorrelation matrix A. Here x and y are random
vectors with zero average and 
xixj�= 
yiyj�=�ij correlations,
Therefore, M sequential entries of x or y form a discrete
realization of �n. This random vector is then used to propa-
gate Eq. �4� with a fourth-order Runge–Kutta method. The
integral in Eq. �4� is calculated at each time step with the
Simpson’s rule, where in order to enhance performance, �n�t�
is truncated at time T at which �n�T� is negligibly small.
Matrix multiplications are carried out by the discrete Fourier
transform subroutine library �FFTW3�. Since A is a circulant
matrix,25 we only need to Fourier transform its first line to
obtain the matrix �. The scheme is limited by the memory
cost of storing the vector of noise realizations �n.

B. Simplified equations for specific forms of �n„t…

The scheme described above is valid for general forms
of �n�t�. However, the integral in Eq. �4� can be calculated
more efficiently once rewritten in a differential form. For
example, for an OU noise

�n
�OU��t� =


n

�n
exp
−

�t�
�n
� ,

�10�

�n
�OU���� � �

−�

�

e−i�t�n
�OU��t�dt =

2
n

1 + ���n�2 ,

of intensity 
 and correlation time �, we introduce two aux-
iliary dynamical variables

y1�t� = �
0

t

dt��L�t − t��p1�t�� ,

�11�

yN�t� = �
0

t

dt��R�t − t��pN�t��

satisfying the differential equations

ẏ1 =

L

�L
p1 −

1

�L
y1,

�12�

ẏN =

R

�R
pN −

1

�R
yN.

Substitution of Eq. �11� into Eq. �4� results in a significant
improvement of the numerical efficiency. Note that the OU
noise can be alternatively simulated using a linear Langevin
equation with a linear Gaussian white noise term.22,28 How-
ever, in such a scheme, time integration error may cripple the
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FD relation �5�. In contrast, in the present scheme, the col-
ored noise is directly simulated using Eq. �9� to fulfill the FD
relation at any time step.

The main physical drawback of the OU model is that it
has a single controllable parameter � determining the shape
of the spectral density J���: Both the maximum position and
the spectral width are controlled by 1 /�. To account for spec-
tral functions of various shapes, and in particular to consider
resonance effects, where the vibrational spectra of the mol-
ecule and the solids overlap, we introduce the more
physically relevant exponentially damped harmonic form
�n=L ,R� �Refs. 29 and 30�

�n
�abc��t� = cn exp�− an�t��cos�bn�t�� �13�

with the Fourier transform

�n
�abc���� = �

−�

�

dt exp�− i�t�cn exp�− an�t��cos�bn�t��

=
2cnan��2 + an

2 + bn
2�

�an
2 + �2 − 2�bn + bn

2��an
2 + �2 + 2�bn + bn

2�
.

�14�

Figure 2 illustrates the shape of this three-parameter �abc�
damping function. It is peaked at

�max = ��a2 + b2�1/2 	 �2b − �a2 + b2��1/2 �15�

with a maximum value of ��abc���max�=c a

2b��a2+b2−b�
. The

width is controlled by the parameters a and b. While this
correlation function has been artificially constructed, it can
serve as a useful tool for simulating the more realistic power-
law model

��P���� � �s exp�− �/�c� �16�

a widely accepted description of solids, where �c is the res-
ervoir cutoff frequency and s is an integer. In Fig. 2 we

illustrate the three spectral functions: ��OU����, ��P���� with
s=0,1 and ��abc����, demonstrating that the proposed struc-
ture �Eq. �14�� can reproduce some essential properties of a
power law model: The onset of a maxima at a controllable
frequency and a reduced density of states close to zero. This
function is also useful for studying resonance effects as we
can center it at a specific frequency �dotted line of Fig. 2�b��.
For clarity, we also include a schematic plot of the phonon
density of states for each model, assuming ������2����
�see discussion after Eq. �6��. By tuning its parameters, the
abc damping function can represent either an Ohmic bath, or
a Debye-like spectrum. It should be also noted that while our
molecular chain is strictly 1D, the baths’ damping functions
represent the phonon spectrum of a more realistic three-
dimensional �3D� solid.31

Utilizing the form �14�, the system dynamics can now be
followed by defining two auxiliary dynamical variables, e.g.,
at the left contact

y1�t� = cL�
0

t

dt�e−aL�t−t�� cos�bL�t − t���p1�t�� ,

�17�

z1�t� = cL�
0

t

dt�e−aL�t−t�� sin�bL�t − t���p1�t��

satisfying the differential equations

ẏ1 = − aLy1 − bLz1 + cLp1,

�18�
ż1 = − aLz1 + bLy1.

Analogous equations hold at the right end

ẏN = − aRyN − bRzN + cRpN,

�19�
żN = − aRzN + bRyN.

Substituting Eqs. �18� and �19� into Eq. �4� results in a sto-
chastic differential equation without an integration term,
which is more efficient to simulate.

IV. RESULTS

We describe first the molecular structure of the chain.
We model the interactions between the atoms using a Morse
potential of dissociation energy D, width parameter �, and an
interatomic equilibrium separation xeq

HM = �
k=1

N
pk

2

2m
+ D�

k=0

N

�e−��xk+1−xk−xeq� − 1�2. �20�

The atoms indexed by 0 and N+1 are the left and right
reservoirs atoms. The following parameters are used:
D=3.84	102 /�2 kJ /mol, �=1.875� Å−1, xeq=1.54 Å, and
m=12 g /mol. Here � is a parameter controlling the molecu-
lar anharmonicity, where for �=1 these numbers describe a
c-c stretching mode.32 We refer to the case of �=0.01 as the
“harmonic model,” yielding the characteristic molecular fre-
quency �M =�2D�2 /mr�200 ps−1, where mr is the reduced
mass of the carbon atom.33 The “anharmonic model,” unless
otherwise stated, refers to �=6. We have found �see repre-
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FIG. 2. Comparison between different forms for the damping function ����.
�a� A power law model �Eq. �16�� with s=0 and �c=1 �dashed�; A three-
parameter model ��abc����, see Eq. �14�, with a=1, b=0.1, c=0.5 �full�; The
OU process, �Eq. �10��, with �c=2, 
=0.5 �dashed-dotted�. The inset dem-
onstrates the respective phonon density of states, ������2���� for the three
cases. �b� Power law model with s=1 and �c=4 �dashed� and a three-
parameter model ��abc���� with a=3, b=5, c=4 �full� and a=2, b=10,
c=3 �dotted�. The inset demonstrates the respective phonon density of
states.

094101-4 Y. Zhou and D. Segal J. Chem. Phys. 133, 094101 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



sentative results in Fig. 3� that the dynamics of a chain with
the alkane force field ��=1� is well reproduced by the har-
monic model �=0.01.21 The Morse model with �=6 can be
thought of as a hard-sphere potential with short range attrac-
tive interactions. We also present below �Fig. 10�c�� results
for a Morse potential with �=12, representing a hard-sphere
potential. To realize such a system experimentally one may
either study the dynamics of hydrocarbons at very high tem-
peratures, close to dissociation, or consider a colloidal sus-
pension in a narrow constriction.

A. Symmetric junctions

We adopt first the OU spectral function, �n
�OU��t�

=

n

�n
e−�t�/�n, and use the algorithm prescribed by Eqs. �11� and

�12�. In Fig. 3 we present the heat current for harmonic and
anharmonic chains as a function of the molecular size N.
Like the behavior discussed in Ref. 22, we find that if the
reservoirs are characterized by a short memory time
�Markovian limit� �i� harmonic junctions conduct better than
anharmonic systems and �ii� the current in anharmonic sys-
tems decays with size. On the other hand, when the memory
time of the reservoirs is long compared to the molecular time
scale �inverse characteristic frequency�, �i� the conductance

of anharmonic junctions increases with size and �ii� anhar-
monic junctions may conduct better than the corresponding
harmonic junctions.34

In order to explore resonance effects, where the molecu-
lar vibrations overlap, or mismatch, with the solids’ phonons,
we simulate next the conduction properties of the molecular
Hamiltonian �20� adopting the damping form �14�, exposing
the crucial role of the reservoirs’ non-Markovian properties.
We use three variants �k=1,2 ,3� of the abc spectral func-
tion, illustrated in Fig. 4, where in each case we assume that
the reservoirs are identical, �L

�abc����=�R
�abc����. We define

�max as the frequency at which ��abc���� is peaked. We fur-
ther include the normal modes of a linear 1D chain of
coupled harmonic oscillators of size N=5 �dashed spikes�
and N=20 �dotted spikes�, �n=�2�M sin��n /2�N+1��; n is
an integer, 1�n�N. The three different setups considered
are schematically depicted in Fig. 5.

Figure 6 demonstrates the length dependence of the cur-
rent for each damping function. We find that depending on
whether the reservoirs’ spectral functions overlap with the
molecular vibrations, centered around �M �200 ps−1, or lay
below or above them, the junction conductance significantly
varies. In harmonic systems the current JH saturates for long
enough chains, N�10, irrespective of the reservoirs spectral
properties, in agreement with the results of Ref. 21. In con-
trast, in anharmonic junctions the current JA may either de-
crease, in �a� and �b�, or increase �c� with size, delicately
depending on the reservoirs properties: When the frequency
window of the molecule and reservoirs overlap, �max��M,
JA weakly decays with length due to the increased impor-
tance of inelastic scattering processes, see Fig. 6�b�. A log-
log analysis further reveals that JA�N−0.1. Note that for N
=20, JH /JA�1.5, i.e., in the resonance case a harmonic junc-
tion better conducts than its anharmonic analog.

We turn to the case where the solids’ phonon bands mis-
match the molecular modes. In Fig. 6�a� we show the case
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FIG. 4. Three abc damping functions �Eq. �14��, centered either below,
�1���, in resonance, �2���, or above, �3���, the characteristic molecular
frequency �M. The dashed �dotted� spikes are positioned at the normal mode
frequencies of a 1D harmonic chain of length N=5 �N=20�. The height of
these vertical lines has no physical meaning here.
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FIG. 5. Schematic representation of the three setups studied in Fig. 6. The
shaded area at the left solid represents the populated bath modes. The solid
line at the center stands for a characteristic molecular mode.
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FIG. 3. Size dependence of the heat current in harmonic ��=0.01, dashed
line� and anharmonic ��=6, full line� chains with non-Markovian heat baths.
�a� OU noise with �=0.01 ps; �b� OU noise with �=0.04 ps. TL=300 K,
TR=0 K, 
=50 ps−1 in both cases. The circles were obtained using �the
physical� �=1 model, essentially reproducing the harmonic results.
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�max
�M, i.e., most �or all� molecular modes lay above the
bath modes. Here both JH and JA first increase with size, then
at a critical size, N�7, JH saturates, while JA begins to de-
cay. The fact that both JH and JA accordingly increase up to
N�7 hints that the underlying mechanism is common, prob-
ably the broadening of the molecular spectrum bringing it to
resonance with the reservoirs modes. Figure 4 indeed sup-
ports this assertion. The normal modes of short chains are
situated above the center of �1���: For N=2 the two molecu-
lar modes are located at �1�150 ps−1 and �2�250 ps−1

�not shown�, while the modes of N=5–7 chain begin to
overlap with �max. The vibrations of an N=20 chain already
cover the relevant spectral window, �n=20–300 ps−1. Be-
yond the critical size N=7 transport is thus dominated by
molecular modes in resonance with the bath phonon spec-
trum, and inelastic collisions become a significant factor, re-
ducing JA. In the oppositely detuned limit, �max��M, dem-
onstrated in Fig. 6�c�, we again observe a short-N dynamics
in which JH and JA similarly behave. Beyond N�5, JH satu-
rates, while JA increases with size. This can be reasoned
again as reflecting the increased importance of nonlinear in-
teractions beyond a certain length, allowing for two-phonon
recombination processes on the junction, leading to an en-
hancement of JA in comparison to the harmonic component.
Overall, quite significantly, in this case at N=20, JH /JA

�0.6.
In Fig. 7 we display the length dependence of the ther-

mal conductance, K�J /�T, for two values of �T �50 and
300 K� for harmonic and anharmonic junctions. Note that the
results at higher temperatures are more noisy, as a better
averaging over time and the ensemble is necessary in order
to achieve convergence. As expected, the harmonic results
overlap at different temperature differences since JH��T.24

In contrast, the conductance of anharmonic systems depends
on the actual junction temperature, where for higher Ta

= �TL+TR� /2 the anharmonic and harmonic results more no-
tably deviate. However, the qualitative length dependence of
the �anharmonic� conductance stays intact irrespective of the
temperature bias. We thus safely conclude that the results
presented in Fig. 6 are representative for a broad range of
temperatures.

We study next in details the effect of the bath spectral
properties on the junction conductance. We generate a series
of damping functions ��abc���� �see Fig. 8�. For each func-
tion, centered at �max, �see Eq. �15��, we calculate the heat

current for a short chain of N=5 beads, considering either the
harmonic limit with �=0.01 or the Morse interatomic poten-
tial with �=6. We again assume a symmetric junction with
identical reservoirs, �L

�abc����=�R
�abc����. The results are pre-

sented in Fig. 9, manifesting the following features: If the
baths’ spectral functions overlap with the characteristic mo-
lecular frequency ��M �200 ps−1� the harmonic system con-
ducts better than its anharmonic counterpart. In contrast,
when the molecular frequencies lay below the solids’ band,
�max��M, anharmonic junctions better conduct, as phonon-
phonon scattering events contribute to energy transmission.
In the opposite case, �max
�M, harmonic junctions are
more effective heat conductors, in agreement with the results
of Fig. 6.

In Fig. 10 we demonstrate that this behavior is robust at
various conditions: �a� at a smaller temperature difference,
�T=50 K, �b� for lower temperatures, and �c� assuming
stronger anharmonicity, taking �=12 �modeling a hard
sphere potential�. We thus conclude that when the bulk char-
acteristic frequencies exceed the molecular frequencies, an-
harmonic interactions lead to the enhancement of the heat
current with respect to the harmonic value. This effect is
marginal at low temperatures.

B. Junctions with solids of dissimilar spectra

Thermal flow asymmetry in two-terminal devices, dis-
playing a greater heat flux in one direction than the other, has
been experimentally observed in unevenly mass-loaded
micron-scale nanotubes.35 Generally, this thermal rectifying
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effect is achieved when the device incorporates some
spatial asymmetry combined with nonlinear �many-body�
interactions.36–39 It is of interest to understand the fundamen-
tal principles governing this effect,40,41 and furthermore to
control its direction42 and enhance its magnitude.43,44

Here we combine reservoirs of dissimilar spectral prop-
erties, simulating distinct solids, e.g., a metal and a semicon-
ductor, and calculate the heat current asymmetry in anhar-
monic chains. We find that the length dependence of the heat
current is markedly distinct for forward and reversed opera-
tion modes, potentially leading to a significant rectification
ratio for long chains. In particular, in Fig. 11 we employ
dissimilar damping functions �L

�abs���� with �max=50 ps−1

and �R
�abs���� with �max=250 ps−1, corresponding to the De-

bye frequencies of 8 and 40 THz, respectively. Recall that
the molecular vibrations are centered around �200 ps−1. As
expected, we find that harmonic chains do not rectify heat
�data are overlapping�, while in anharmonic systems the sign
of the temperature bias does play a role: For �T
0
�TL
TR� the current decays with size ���, while for �T
�0 it is enhanced with N. Overall, for N�20, rectification
ratio is R��J��T� /J�−�T��=1.1.

The heat current is larger when flowing from a region

with a lower upper limit frequency �L reservoir� to a region
with a higher upper limit frequency �R reservoir�, in agree-
ment with other studies.40 When TL�TR, because of the ex-
istence of nonlinear effects, low frequency phonons from the
L end inelastically scatter across the molecule to higher fre-
quencies, thus they can transmit to the R end, accommodat-
ing only high frequency phonons. This effect is facilitated
with increasing molecular size as more molecular modes
overlap with the right bath. In the opposite limit of TR�TL,
only very few R modes, at the tail of the spectrum, are popu-
lated, and inelastic effects should play their role twice: First,
for transmitting thermal energy from the right side to the
molecular modes, then for downconverting again the popu-
lated molecular modes to resonance with the low energy L
phonons. Increasing the molecular size in this scenario actu-
ally decreases the current.

In Figs. 11�c� and 11�d� we further demonstrate the scal-
ing laws of the heat current with chain size, for the anhar-
monic force field. For �T�0 we obtain the qualitative be-
havior J��T�=J0−� /N with the asymptotic current value
J0�4.3	10−8 W and a slope ��13	10−9 W. For a nega-
tive bias, a log-log dynamics is obtained, J�−�T��cN−�,
with c�4.3	10−8 W and the power ��0.04. Thus, for
long chains the rectification ratio should slowly increase,
R�N=30��1.2.

It should be noted that the molecular anharmonicity em-
ployed in this study is enhanced, above the actual c-c force
field value, in order to inflate the role of nonlinear interac-
tions in molecular heat conduction. Generally, given a junc-
tion with some anharmonic interactions combined with struc-
tural asymmetry, we expect that rectification will be small for
short chains, as harmonic interactions typically dominate at
those sizes. Long chains, even of moderate anharmonicity,
better rectifies. As asymmetry here is introduced at the
boundaries, utilizing reservoirs with distinct properties,
eventually for long enough �anharmonic� chains the contact
effect will be marginal, and rectification will diminish. One
could observe the rectification effect discussed here in real-
istic structures by adjoining two objects of distinct vibra-
tional spectra, e.g., connecting metallic and semiconducting
nanotubes. The chirality of such nanotubes is different, yet
they can have an equal diameter, making the joint smooth.45

V. CONCLUSIONS

In this work we have studied the thermal conduction
properties of solid-molecule-solid junctions using general-
ized Langevin equation simulations. The focus of this paper
has been on the effect of the solids phononic spectral prop-
erties on the heat transport characteristics for harmonic and
anharmonic molecules. Using an exponential-damped har-
monic kernel, we mimicked the spectral density of solids
with certain �high frequency or low frequency� phonon
bands. It was found that the heat current characteristic is
highly sensitive to the solid-molecule vibrational frequency
mismatch. While for harmonic systems the current is con-
stant for N�5, for anharmonic systems the current may ei-
ther decay or increase with chain length, depending on the
solid-molecule vibrational mismatch. We also found that
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when the molecular vibrations are above the solids’ charac-
teristic frequency, harmonic junctions conduct better than
their anharmonic counterparts, whereas in the opposite case
nonlinear processes enhance the current beyond the har-
monic value. Thus, while for molecules connected to Mar-
kovian �white noise� reservoirs anharmonic interactions gen-
erally lead to an increased resistance and reduction of
current, in molecules coupled to colored reservoirs anhar-
monic effects may enhance the heat flux with chain length.

We have also demonstrated the effect of thermal rectifi-
cation �thermal flow asymmetry� in anharmonic junctions
made of interfacing materials with dissimilar vibrational
spectra. Not only is the magnitude of the current distinct for
forward and reversed biases, but the current-length behavior
manifests a contrary dynamics, thus significant rectification
ratio might be achieved for long chains. Specific realizations
for our setup include, e.g., surfaces such as Pb and diamond.
The dominant bands of the Pb vibrational spectra is in the
1–2 THz ��max�10 ps−1 in our model� while for the dia-
mond phonons lay in the range of 50–80 THz ��max

�400 ps−1�.5 The molecular force field considered here re-
lays on the 1D alkane chain parameters, with increased an-
harmonic parameters. In order to observe the nonlinear ef-
fects discussed here, one should consider molecules with
strong nonlinear interactions.

It is of interest to further extend our study and consider a
realistic 3D modeling of the nanoscale object: The current
description of the alkane molecule admits only the stretching
motion in the backbone. Allowing for the bending motion,
including more degrees of freedom, should lead to the en-
hancement of the conductance, yet it is not clear whether the
heat current length dependence would be significantly af-
fected. Future study will be devoted to this issue. Quantum
mechanical effects were completely dismissed in this work
and a purely classical treatment has been adopted here. A
simple route for incorporating some quantum effects into a
Langevin-type treatment would involve replacing the classi-
cal reservoirs �solids� by quantum heat baths accounting for
quantum statistics.46,47

Besides the fundamental interest in the transport mecha-
nism of nonlinear microscopic systems, manipulating flow of
thermal current at the nanoscale might be useful in applica-
tions: for increasing the efficiency of thermoelectric
devices,48 for constructing phonon filters improving thermal
insulation,5 and for realizing active thermal devices, e.g.,
�single-molecule� phonon transistors,49 thermal logic gates,50

or memory elements.51
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