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We propose a molecular device that pumps heat against a thermal gradient. The system consists of a
molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The
pumping action is achieved by applying an external force that periodically modulates molecular levels. This
modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its
coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the
slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize
the device performance.
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I. INTRODUCTION

A heat pump is a device that transfers heat from a low to
a high temperature reservoir by applying an external work
that modulates the system’s parameters. This paper discusses
a molecular machine of this kind. The analogous electrical
device that transfers charge �or spin� against the electro-
chemical potential bias was studied theoretically �1� and
demonstrated experimentally in an open quantum dot when
varying both the dot voltage and the tunneling barrier heights
�2�.

In a prototype particle pumping machine, each cycle be-
gins with isolating the system from one reservoir by reducing
its coupling to the system, while applying a potential that
drives carriers from the other reservoir into the system. Next,
this configuration is reversed, the system is coupled to the
previously disconnected reservoir and isolated from the pre-
viously connected one, and its potential changes so as to
drive carriers from the system into the connected reservoir.
Consequently a net current is flowing through the system. A
basic requirement for demonstrating pumping operations is
the modulation of at least two internal parameters. Out of
phase modulation provides an adiabatic �reversible� pumping
operation �3�, while in the general case, quasiadiabatic �irre-
versible� processes can be realized �4�.

Motivated by the growing interest in nanomechanics �5�
and quantum thermodynamics �6�, we present here a molecu-
lar model for a thermal pump that is based on similar oper-
ating principles. Other thermal devices that have been envi-
sioned recently are a heat rectifier �7–9�, a thermal transistor
�10�, and even a mechanical analog of a laser �11�. As with
any machine, one seeks optimization of performance with
respect to both efficiency and power.

In our model a molecular unit connects two spatially
separated left �L� and right �R� heat baths held at different
temperatures, and transfers heat from the cold �c� �hence-
forth referred to as the left side� into the hot �h� �right side�
reservoir. An external force modulates the energy level struc-
ture of the conducting molecule and consequently its effec-
tive coupling to the reservoirs �thus providing a modulation
of two system parameters while modulating a single physical

variable�. This system is shown to operate as a heat pump
that can transfer energy from a cold to a hot reservoir.

Similar abstract models of this nature were proposed be-
fore by Kosloff and co-workers �12–15�. Here we consider a
specific, realizable, model of a molecular level heat pump
based on the modulation of molecular energy levels. Such a
modulation can be achieved by a stark shift affected by a tip
induced local electric field, by magnetic field splitting of
energy levels, and by an external force applied by the tip of
an atomic force microscope �16�. It was also demonstrated
recently that nanotubes tension can be tuned by applying an
electric field, thus modulating the tube vibrational frequen-
cies �17,18�. Finally, the compression of molecules affects
their vibrational modes, e.g., the radial breathing modes of
nanotubes are pressure dependent �19� with about d� /dP
�1 cm−1/Gpa �20�, making high pressures necessary for a
significant effect. Each of these schemes can be used as a
basis of the proposed heat engine. Below we describe the
concept of this engine, consider its performance, and effi-
ciency in terms of molecular and junction parameters, and
suggest possible optimization methods.

II. MODEL

The model system consists of a molecular unit connecting
two thermal reservoirs c and h of inverse temperatures �c
= �kBTc�−1 and �h= �kBTh�−1, respectively, where kB is the
Boltzmann constant. For simplicity we assume that the heat
transfer is dominated by a specific single mode. In addition,
if the bath temperatures are low enough, only the lowest
vibrational states of the molecule are populated, and we can
model the isolated molecule by a two-level system �TLS�.
An external force drives periodically the frequency of this
molecular mode, i.e., the two level energy spacing. The total
Hamiltonian, therefore, includes three terms

H = HS + HB + HMB, �1�

where
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HS =
��t�

2
��1��1� − �0��0�� �2�

is the Hamiltonian of the molecular mode under consider-
ation ��	1�. Here �0� and �1� represent the two states of
energies �0 and �1, and

��t� 	 �1 − �0 = �0 + F�t� , �3�

provides the time dependent driving with a static frequency
�0 and a periodic modulation F�t�=F�t+2� /��. In what fol-
lows we refer to ��t� as the instantaneous energy gap. F�t�
can be expanded in a Fourier series

F�t� = 

n=−	

	

�An cos�n�t� + Cn sin�n�t�� . �4�

We also define the indefinite integral of this perturbation that
will be useful below:

f�t� 	 � F�t�dt = 

n=−	

	 � An

n�
sin�n�t� −

Cn

n�
cos�n�t� .

�5�

The two thermal reservoirs c and h

HB = Hc + Hh �6�

do not interact directly with each other, and can exchange
energy only through their coupling to the system. Transitions
between the �0�↔ �1� states can occur due to the coupling to
these heat baths

HMB = B�0��1� + B†�1��0� ,

B = Bc + Bh, �7�

where B
 �
=c ,h�, the bath operators, are given in terms of
their phonon coordinates. The thermal reservoirs are charac-
terized by their spectral density functions. An essential ingre-
dient of our model is having different spectral functions for
the left and right reservoirs. Below we model this difference
by assuming that the reservoirs are characterized by different
Debye frequencies �D

c ��D
h . Similar effects may be achieved

by other means, e.g., connecting identical baths to the system
via “doorway oscillators” of different frequencies.

Equations �1�–�7� represent a particular kind of a molecu-
lar relaxation process �21�. Unlike the standard relaxation
models here the molecular mode is �a� coupled to two ther-
mal reservoirs of different temperatures and spectral proper-
ties, and �b� modulated by an external force so that the cor-
responding level spacing oscillates in time. This then
becomes a “driven dissipative” system that differs from pre-
viously considered models �22� by working in the system
eigenstate representation and by coupling to two independent
thermal reservoirs.

III. OPERATION CYCLE

Next we describe a setup that leads to the desired pump-
ing operation. First, a temperature gradient is applied across

the system by keeping Th�Tc �h and c stand for “hot” and
“cold” reservoirs�. In addition, asymmetry is built into the
system by choosing �D

c ��D
h and c�h, where 
 is a pa-

rameter related to the vibrational relaxation rate induced by
the 
 thermal bath �see Eqs. �20� and �24��. With this choice
of parameters, when the TLS frequency ��t� is small, it is
coupled more strongly to the cold reservoir. Energy is then
injected from the cold reservoir into the system whenever the
TLS temperature defined as

TTLS�t� = −
��t�

kB ln„P1�t�/P0�t�…
�8�

is smaller than Tc. Here P0 and P1 are the population of the
�0� and �1� states, respectively. The TLS energy spacing is
next increased by the action of the external force, therefore it
couples more effectively to the right, hot reservoir. If the
levels’ population is kept �almost� fixed during this process,
the effective TLS temperature becomes very high. If it is
higher than Th, heat will be transferred from the TLS into the
right—hot reservoir—and the pumping cycle is completed.
For a schematic representation see Fig. 1.

This pumping machine is a continuous version of the dis-
crete four strokes pump of Ref. �15�. Here the system is
effectively disconnected from each reservoir at different
times due to the asymmetric construction of the reservoirs
spectral properties and the system-bath interactions.

IV. DYNAMICS

Given the time dependent Hamiltonian Eqs. �1�–�7�, a
Master equation for the states population Pn �n=0,1� can be
obtained by making the following assumptions: �i� The

FIG. 1. �Color online� Schematic picture of the pumping cycle.
�a� At low frequencies the TLS is strongly coupled to the left �cold�
reservoir. Thus when TTLS�Tc heat is transferred from the left bath
to the TLS. �b� At high frequencies the TLS is coupled only to the
right �hot� reservoir, thus its internal energy is transmitted into the
right bath when TTLS�Th.

D. SEGAL AND A. NITZAN PHYSICAL REVIEW E 73, 026109 �2006�

026109-2



system-heat bath couplings are small so that second order
perturbation theory can be applied to yield Golden-rule-type
relaxation rates. �ii� The memory time of the bath fluctua-
tions �
 �
=c ,h�, is short relative to the thermal relaxation
time

�

−1 � � . �9�

Here 1/� is the thermal relaxation time of the two-level
system given by �−1= �ku+kd�−1, see definitions below. Un-
der these assumptions, Redfield theory �23� leads to the
Markov-Master equations for the states population, �See Ap-
pendix A for a detailed derivation�

Ṗ1 = − kd�t�P1 + ku�t�P0;

P1 + P0 = 1, �10�

where

ku = �
0

t

ei�0�t−��ei�f�t�−f�����B���B†�t��d�

+ �
0

t

e−i�0�t−��e−i�f�t�−f�����B�t�B†����d� , �11�

kd = �
0

t

ei�0�t−��ei�f�t�−f�����B†�t�B����d�

+ �
0

t

e−i�0�t−��e−i�f�t�−f�����B†���B�t��d� . �12�

Here f�t� is the time periodic function of Eq. �5�. Note that
the relaxation rates include contributions from both cold and
hot thermal baths since �B†�t�B�0��= �Bc

†�t�Bc�0��c

+ �Bh
†�t�Bh�0��h, as implied by Eq. �7�, where the averages are

over the thermal distributions of the corresponding baths.
Therefore

ku = ku,c + ku,h; kd = kd,c + kd,h. �13�

A. Rate constants: General expression

We derive next explicit expressions for the rate constants
in the general, nonadiabatic regime. We begin with the first
integral of the excitation rate ku in Eq. �11�. It can be ex-
panded as follows:

I1 	 

n,m

JmJn
*ei�m−n��t�

0

	

ei��0+n��x�B�0�B†�x��dx , �14�

where the sum goes over 
n,m=−	
	 , and the upper limit in the

integral is extended to infinity. To obtain �14� we have uti-
lized the Fourier expansion

eif�t� = 

n=−	

	

Jnein�t. �15�

For the simple cosine modulation, F�t�=A1 cos��t�, the ex-
pansion coefficients reduce to the Bessel functions Jn�A1 /��

of order n. We note that the m series in Eq. �14� trivially
sums up to eif�t�, yet we prefer this representation since it
formally eliminates the specific F�t� dependence from the
equations. The second integral in Eq. �11� can be manipu-
lated in the same way to produce

I2 	 

n,m

JnJm
* ei�n−m��t�

−	

0

ei��0+n��x�B�0�B†�x��dx . �16�

Assuming that �−	
	 ei��0+n��x�B�0�B†�x��dx is a symmetric

function around zero so that the integrals in I1 and I2 can be
replaced by 1

2�−	
	
¯, the total excitation rate becomes

ku 	 I1 + I2 = 

n,m

Re�JnJm
* ei�n−m��t�ku

�n�;

ku
�n� = �

−	

	

ei��0+n��x�B�0�B†�x��dx , �17�

where Re denotes the real part. It is given in terms of stan-
dard time independent transition rates evaluated at different
overtone frequencies n� �n are integers�, multiplied by the
appropriate Fourier coefficients and a time dependent modu-
lation. The downward rate kd is obtained in a similar way by
combining the two integrals of Eq. �12�:

kd = 

n,m

Re�JnJm
* ei�n−m��t�kd

�n�;

kd
�n� = �

−	

	

ei��0+n��x�B†�x�B�0��dx . �18�

For infinitely slow modulation, An /�, Cn /�→	, the stan-
dard time independent expression for the vibrational relax-
ation rate �24� is recovered, kd�t�→kd

�0�, by making use of the
sum identity 
n,mJnJm

* ei�n−m��t=1.
The transition rates �17� and �18� can be further decom-

posed into the c and h contributions as in Eq. �13�. The up
and down rates induced by each thermal reservoir are inter-
related by the detailed balance condition for each n compo-
nent

ku,

�n� = kd,


�n� e−�
��0+n���
 = c,h� . �19�

Our results so far are general within the weak system-
reservoir interaction limit. As a specific model for the bath
correlation functions we use below the following form:

kd,

�n� = �
, �0 + n� � �D





e−��0+n��/�D



, �0 + n� � �D

 � . �20�

Here �D

 is the Debye frequency characterizing the 
=c ,h

reservoir. This form combines the expected relatively weak
dependence on ��t� for ��t���D


 with the exponential be-
havior known as the energy gap law �25� in the opposite
limit. Note that the exact form of the bath correlation func-
tion is not crucial for demonstrating the pumping effect. The
only requirement is that it should vary strongly with energy
for ��t���D


 . In general, we assume c�h and �D
c ��D

h .
We associate the bath relaxation time �
 with the inverse
Debye frequency.
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B. Rate constants: Adiabatic regime

We can also derive explicit expressions for the transition
rates assuming that the energy modulation is adiabatic, i.e., it
does not itself induce transitions in the TLS or in the thermal
reservoirs. In this regime the integrals of Eqs. �11� and �12�
can be simplified by approximating the differences by first
derivatives, f�t�− f�t−x��xF�t�, x= t−�. Higher order terms
are neglected assuming ��1/F�t��dF�t� /dt���D


 . �For a co-
sine modulation, F�t�=A1 cos��t�, this condition translates
into ���D


�. Then

I1 = �
0

	

ei�0xei�f�t�−f�t−x���B�0�B†�x��dx → �
0

	

ei�0xeixF�t�

��B�0�B†�x��dx . �21�

Conducting similar operations on the second integral of Eq.
�11� yields

I2 = �
−	

0

ei�0xeixF�t��B�0�B†�x��dx , �22�

and the adiabatic rate constants become

kd,
 = �
−	

	

dx ei��t�x�B

†�x�B
�0�� ,

ku,
 = kd,
e−�
��t�; ��t� = �0 + F�t� . �23�

The adiabatic approximation therefore implies that an instan-
taneous detailed balance would be satisfied at all times if the
system was coupled to a single bath, i.e., P1�t� / P0�t�
=e−��t�/kBT, where T is the single bath temperature. Also in
this case we utilize the exponential energy gap law for mod-
eling the adiabatic relaxation rates:

kd,
 = �
, ��t� � �D




e−��t�/�D



, ��t� � �D

 � . �24�

V. ANALYSIS OF PERFORMANCE

The performance of a heat pump can be characterized
both in terms of its power—the amount of heat transferred
per cycle �i.e., the period of the modulating force� and its
efficiency, defined as the ratio between the heat transferred
and the work invested. The internal energy E of the TLS is
given by

E = �0P0 + �1P1, �25�

where �0 and �1 are measured from some fixed reference,
here chosen by Eq. �2� to be the midpoint between the two
levels. The internal energy is changed either through modu-
lation of the TLS energy spacing or due to population trans-
fer between the levels �12,15�

dE
dt

= �0
dP0

dt
+ �1

dP1

dt
+ P0

d�0

dt
+ P1

d�1

dt
. �26�

This rate of energy change can be separated into its work Ẇ,

and heat Q̇ components

Ẇ 	 P0
d�0

dt
+ P1

d�1

dt
,

Q̇ 	 �0
dP0

dt
+ �1

dP1

dt
. �27�

Using the following equalities:

Ṗ0 + Ṗ1 = 0; �̇0 + �̇1 = 0, �28�

that are based on Eqs. �2� and �10�, we find

Ẇ = S�t��̇�t�; Q̇ = ��t�Ṡ�t� , �29�

where S	�P1− P0� /2 is referred to as the system polariza-
tion �12,15�. As the effect of the two reservoirs is additive,
we can decompose the rate at which S changes to its c and h
contributions

Ṡ = Ṡc + Ṡh,

Ṡ
 = − kd,
P1 + ku,
P0�
 = c,h� , �30�

where P1 and P0 are obtained by solving Eq. �10�. Conse-

quently, the heat flux Q̇ can be written as a sum of c and h
terms

Q̇ 	 Q̇c + Q̇h; Q̇
 = ��t�Ṡ
. �31�

We note that in steady state Q̇c=−Q̇h, i.e., the heat current is
the same at the left and right contacts. Here these quantities
are, in general, different, even on the average, due to the

action of the external perturbation, Jc=Q̇c�Jh=−Q̇h. In the
equations above the heat current is taken positive when flow-
ing left to right.

The coefficient of performance �COP� of a heat transfer
machine can be defined with regard to its performance either
as a heat pump

�h = Qh/W , �32�

or as a refrigerator

�c = Qc/W , �33�

where Q
=�cycleQ̇
 �
=c ,h� and W=�cycleẆ. The maximal
theoretical values of these coefficients are given by that of a
reversible �Carnot� machine,

�h
max =

Qh

Qh − Qc
=

Th

Th − Tc
, �34�

�c
max =

Qc

Qh − Qc
=

Tc

Th − Tc
. �35�

In what follows we will focus on the refrigerator COP Eq.
�33�, as a measure of efficiency of our molecular machine.

In an ideal refrigerator the operation cycle consists of four
distinct steps: �i� Thermal: The TLS with an energy gap �c
couples to, and exchanges energy with, the left �cold� bath
only. �ii� Adiabatic: The TLS is decoupled from the reser-

D. SEGAL AND A. NITZAN PHYSICAL REVIEW E 73, 026109 �2006�

026109-4



voirs and its energy spacing is increased to �h. �iii� Thermal:
The TLS is coupled to, and exchanges energy with, the right
�hot� reservoir only. �iv� Adiabatic: The TLS, again decou-
pled from the reservoirs, restores its energy gap back to the
low �c value. It should be emphasized that in the realizable
machine discussed in Sec. III, the system bath decoupling is
not imposed. It is approximated by replacing the adiabatic
steps by transitions whose durations are short relative to the
thermal relaxation time associated with the system-bath cou-
pling. Optimized performance is therefore obtained when the
adiabatic branches of the process are fast relative to the ther-
mal branches, so that no backward heat flow takes place. In
contrast, the thermal branches should be long enough for
attaining full equilibration of the TLS with the interacting
bath.

Consider first the ideal refrigerator in which the system is
decoupled from the cold and hot reservoirs during the adia-
batic branches, 
=c ,h �15�

S
�t� = S

eq + �S
�0� − S


eq�e−�
t; 
 = c,h , �36�

where S

eq is the equilibrium polarization

S

eq = − 1/2 tanh��
/2kBT
� . �37�

�
 is the time independent TLS gap when it is connected to
the 
 reservoir and �
=kd,
+ku,
. We denote the durations of
the thermal branches, i.e., the contact times of the system
with the c and h reservoirs by �̃c and �̃h, respectively, and
recall that the polarization S= �P1− P0� /2 does not change
during the �ideal� adiabatic branches. The polarizations at the
beginning of the thermal branches are therefore given by
Sc�0�=Sh��̃h� and Sh�0�=Sc��̃c�. Consider first the ideal re-
frigerator in which the system is decoupled from both reser-
voirs during the adiabatic branches, i.e., at t= �̃
 is

Sh��̃h� = Sc
eq +

�Sh
eq − Sc

eq��1 − e−�h�̃h�
1 − e−�c�̃ce−�h�̃h

, �38�

and an analogous expression for Sc��̃c�.
The amount of heat pumped out of the cold reservoir dur-

ing each cycle is calculated by substituting the derivative of
Sc�t� �Eq. �36�� into Eq. �29�, then integrating over the con-
tact time with this reservoir,

Qc = �c�Sc�0� − Sc
eq��e−�c�̃c − 1�

= �c�Sc
eq − Sh

eq�
�1 − e−�c�̃c��1 − e−�h�̃h�

�1 − e−�c�̃ce−�h�̃h�
. �39�

When the coupling times �̃c and �̃h are long relative to the
inverse relaxation rates, the TLS equilibrates with the heat
baths during the thermal branches. Then the heat pumped per
cycle is maximized

Qc = �c�Sc
eq − Sh

eq� . �40�

Based on this equation we can derive the condition for at-
taining the desired pumping action: Qc is required to be posi-
tive, implying that Sc

eq�Sh
eq. In the classical limit, �


�kBT
, using Eq. �37�, this translates into the condition
�c /�h�Tc /Th. We can also obtain an expression for the en-

tropy production per cycle using Eq. �39� and a similar ex-
pression for Qh

� 	 − �Qc

Tc
+

Qh

Th
� = ��c

Tc
−

�h

Th
�

��Sh
eq − Sc

eq�
�1 − e−�c�̃c��1 − e−�h�̃h�

�1 − e−�c�̃ce−�h�̃h�
. �41�

The work performed on the system can be calculated simi-
larly to yield �15�

W = ��h − �c��Sc��̃c� − Sh��̃h��

= ��h − �c��Sc
eq − Sh

eq�
�1 − e−�c�̃c��1 − e−�h�̃h�

1 − e−�c�̃ce−�h�̃h
. �42�

When �
�̃
→	, the work approaches

W = ��h − �c��Sc
eq − Sh

eq� . �43�

The COP of this idealized machine, Eq. �33�, is then

�c = �c/��h − �c� . �44�

This does not depend on the temperature, only on the mini-
mal and maximal values of the molecular energy gap. Note
that in the opposite �̃
�
→0 limit, expanding e−�
�̃
 �1
−�
�̃
, leads to

Qc,�,W �
�c�h�̃c�̃h

�c�̃c + �h�̃h

. �45�

If we further assume that the contact times are proportional
to the inverse of the energy gap modulation frequency, we
conclude that both Qc, �, and W scale like �−1. In the next
section we compare these results with the performance of the
realistic machine introduced in Sec. III.

VI. RESULTS

In the general case Eq. �10� has to be solved numerically
for the populations P1�t� and P0�t�=1− P1�t�, and we use the
fourth order Runge-Kutta method for this purpose. We focus
on the long time behavior of these quantities in order to
eliminate effects of the initial conditions. The heat current,
the applied work, and the machine efficiency are calculated
using Eqs. �27�–�33�. In order to retain the Markovian limit
we choose a set of parameters that fulfills �D


 �� �
=c ,h�.
The adiabatic criteria are additionally preserved when
d� /dt�F�t��D


 .
We begin by analyzing an adiabatic machine operating

under a pure sine modulation of the TLS gap, An=0, C1
=25 meV, Cn�1=0, in Eq. �4�. The choice of �
=0.025 meV, �D

c =6 meV and �D
h =250 meV corresponds to

the adiabatic limit. The rate constants are, therefore, calcu-
lated using Eqs. �23� and �24� instead of the general expres-
sions �14�–�20�. This simplifies significantly the computa-
tional effort, since for C1 /��1000 expansion terms Jn up to
the order n�1200 have to be taken into account in order to
achieve convergence. We have also verified that the adiabatic
results perfectly agree with the general formalism. The re-
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sults of this calculation for this choice of parameters �other
parameters are noted in the caption� are displayed in Fig. 2.
Shown are the TLS spacing modulation, the instantaneous
TLS temperature, and the instantaneous heat transferred at
the cold and hot interfaces. We find that in this adiabatic
limit the device does not pump heat, and the energy is trans-
ferred from both the hot bath and the external periodic field
into the cold reservoir. This is also demonstrated through the
temperature of the TLS which is always higher than the tem-
perature of the cold bath. Therefore, an extraction of heat
from the cold reservoir is impossible, and Jc is negative
throughout the cycle.

Consider next the quasiadiabatic situation where the TLS
energy spacing is modulated at a frequency that is at the
same order or smaller than the inverse of the reservoirs re-
laxation times. In Fig. 3 we display the behavior of such a
machine, where the parameters are the same as in the previ-
ous adiabatic model except that �=0.5 meV. In panels �a�–
�d� we show �a� The �periodic� time variation of the TLS
energy spacing ��t�. �b� The effective couplings kd,c and kd,h
of the TLS to the cold �left� and hot �right� reservoirs. When
��t� reaches its maximum value, kd,c becomes negligible,
�1�10−4 meV, and the TLS is effectively disconnected
from the cold reservoir. In contrast, since the Debye fre-
quency at the right hot side is significantly larger than the
molecular frequencies, kd,h remains effectively constant at all
times. �c� The TLS temperature. When ��t� becomes large,
the TLS temperature reaches a maximum of �600 K, larger
than Th=300 K. Heat transfers then from the hot molecular
mode to the right reservoir. The lowest TLS temperature of
�150 K is obtained at small energy spacing, �=15 meV, at
which kd,c�0.2 meV and kd,h=0.1 meV. Therefore, at this
point the molecular mode gets heat from both reservoirs.
This is seen in the bottom panel �d�: Jc �full line� is positive
and Jh �dashed line� are negative when the energy gap � is in
the neighborhood of this small value.

For this operation mode and for these engine parameters
we find that the amount of heat pumped out of the left �cold�

reservoir at each cycle is Qc=0.29 meV, and the efficiency
of the machine is �c=0.073. Note that the heat pumped into
the right contact is not the same due to the action of the
external force. In addition, looking at the instantaneous
pumping we observe a delay of half a cycle in the pumping
action: Heat is pumped from the cold reservoir when the TLS
gap is minimal, and it is injected into the hot reservoir after
half of a cycle when ��t� becomes large. In between, due to
the slow decoupling rate of the cold reservoir from the mol-
ecule, a backward heat flow is observed.

Figure 4 shows results pertaining to the efficiency of this
machine. The top panel �a� presents the entropy production
per cycle � plotted against the driving frequency using the
definition in �41�. It decreases monotonically with frequency
and amplitude. Panel �b� presents the heat transferred per
cycle, that reaches a maximal value for ��0.5 meV. The
efficiency defined in Eq. �33� shown in panel �c�, increases
monotonically, saturates, then decays very slowly. We can
explain these observations as follows: For very slow modu-
lation the TLS is at a steady state driven by its coupling to
the two reservoirs and its temperature is approximately given
by TTLS���cTc+�hTh� / ��c+�h� �9�, higher than Tc. Heat
then always flows towards the cold bath and Qc is negative.
The finite coupling to both reservoirs at all times therefore
inhibits the pumping operation in the adiabatic regime. This
is, in fact, the extreme opposite to the optimal situation in
which the system is decoupled from the reservoirs whenever
needed, that leads to Eq. �40�. In the opposite fast modula-
tion limit the TLS temperature can reach values below Tc,
and can pump heat out of the cold reservoir as in Eq. �39�. Its
efficiency is, however, restricted by the fact that the time is
insufficient for a full equilibration with the cold reservoir,
thus the total energy injection is small. We have also verified
that in this regime both heat, entropy, and work decay like
�−1. This implies that the maximal heat pumping is obtained
at some intermediate modulation frequency, as seen in panel
�b� of Fig. 4. The machine performance is, therefore, optimal

FIG. 2. Adiabatic heat pump under a pure sine modulation, C1

=25 meV, Cn�1=0, An=0. �=0.025 meV, �0=40 meV, c

=2.5 meV, h=0.1 meV, �D
c =6 meV, �D

h =250 meV, Tc=200 K,
and Th=300 K. Top: Energy spacing �dashed line, left vertical axis�
and the resulting TLS temperature calculated using Eq. �8� �full

line, right vertical axis�. Bottom: heat current Jc=Q̇c �full� and Jh

=−Q̇h �dashed�.

FIG. 3. Quasiadiabatic heat pump operating under the modula-
tion frequency �=0.5 meV. Other parameters are as in Fig. 2.
Shown are the TLS energy spacing modulation �a�, the relaxation
rates at the right �dashed� and left �full� contacts �b�, the TLS tem-

perature �c�, the heat currents Jc=Q̇c �full�, and Jh=−Q̇h �dashed�
�d�.
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when working in the quasiadiabatic regime.
In order to better understand the performance of the ma-

chine, we plot in Fig. 5 the coefficient of performance �c
against the heat pumped Qc. This chiller curve shows the
existence of a maximum cooling process and a correspond-
ing coefficient of performance for a given set of parameters.
This characteristic curve is similar to those observed for
other models for irreversible quantum refrigerators �14,26�,
manifesting a universal chiller behavior �27�.

The results obtained above make it possible to investigate
ways to optimize the performance of our heat pump. Figure 6
presents a surface plot of Qc per cycle as a function of am-
plitude C1 and frequency � for a sine type perturbation. We
find that for very weak modulations the system cannot pump
heat, i.e., Qc is negative. The maximal amount of heat per
cycle of Qc=0.4 meV is pumped at C1�30 meV and �
�0.5 meV.

Another technique for optimizing the heat pump operation
is by devising an optimized shape for the modulation func-
tion F�t�. As discussed above, F�t� should be designed so as
to minimize reverse heat transport processes. The parameters
that can be manipulated are the functional form of the modu-
lation, the total time duration of the pulse, and the time al-
located to the four operation branches �15�.

As displayed in Fig. 3, when utilizing a sine modulation
with the given amplitude and coupling parameters, the TLS
temperature varies between the minimal value of T=150 K
�Tc and the maximal value T=600 K�Th. We have argued
that the machine efficiency can be improved if the thermal
branches are long enough so that the TLS comes as close as
possible to the equilibrium with the corresponding thermal
bath, and if between the thermal branches the energy gap is
varied as rapidly as possible. In Fig. 7 we show such a ma-
chine where the modulation is tailored such as to “wait” at its
maximal and minimal values giving the TLS more time to
equilibrate with the different reservoirs at different parts of
its cycle. At the same time the energy gap is changed rapidly
in order to eliminate backward flow to the cold bath. The top
panel �dashed line� presents the shape of the driving signal
and the ensuing TLS temperature. This modulation function
is constructed from the series F�t�=
n=1,3. . .,Ln

Cn sin��nt�,
and Cn=4/�n�18 meV, Ln=9. We find that indeed during
the wait time at the minimal energy spacing ��=20 meV
the TLS heats from 150 K up to �200 K. The same effect is
observed when the TLS reaches its maximal �=60 meV
value: The TLS temperature reduces from �600K down to

�400 K. The fast oscillations of Q̇c at high temperatures
�e.g., between 40–45 ps� sum up close to zero. The refrig-

FIG. 4. Entropy production and efficiency of the nonadiabatic
heat pump displayed in Fig. 3. �a� Dimensionless entropy produc-
tion per cycle. �b� Heat transferred per cycle out of the cold reser-
voir. �c� The refrigerator coefficient of performance �Eq. �33��. C1

=20 meV �dashed�, C1=25 meV �full�, and C1=30 meV
�dashed-dotted�.

FIG. 5. Characteristic chiller plot of the nonadiabatic heat pump
displayed in Fig. 3 with C1=20 meV �dashed� and C1=25 meV
�full�. The control variable is �.

FIG. 6. �Color online� A surface plot of the heat pumped dis-
played against the driving frequency � and amplitude C1 for a
system characterized by the parameters of Fig. 3.
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erator efficiency is �c=0.021 and Qc=0.06 meV per cycle.
The corresponding machine operating under a pure sine
modulation with the same amplitude �Ln=1, C1=18 meV�
does not pump heat.

VII. SUMMARY

In analogy with electron and spin pumps that were inves-
tigated in recent years, we propose here a molecular level
thermal machine that pumps energy from a cold to a hot
reservoir. We discuss its operating principles, performance,
optimization techniques, and possible physical realizations.
Control of heat flow in molecules might be useful for differ-
ent applications, e.g., cooling molecular junctions for opti-
mizing the performance of molecular electronic devices �28�,
controlling chemical reaction pathways, bond breaking pro-
cesses, and folding dynamics �29�, and realizing devices
based on heat flow, in analogy with electron current devices
�30�. We expect that in the future devices whose functional-
ity is determined by both their thermal and electrical proper-
ties �31� will be of great interest.

APPENDIX A: DERIVATION OF THE QUANTUM
MASTER EQUATION

Here we derive the quantum master equation for a two-
level system with a time dependent energy spacing which
interacts with two thermal reservoirs, Eqs. �1�–�7�

H = 1
2 ��0 + F�t����1��1� − �0��0�� + B�0��1� + B†�1��0� + HB.

�A1�

HB=Hc+Hh and the system-bath coupling B includes the c
and h terms, B=Bc+Bh. The evolution of the total density
matrix is given by the Liouville equation ��	1�

��

�t
= − i�H,�� . �A2�

The equations of motion for each density matrix component
�i,j are given in terms of the bath operators

�̇1,1 = − iB†�0,1 + i�1,0B ,

�̇0,0 = − iB�1,0 + i�0,1B†,

�̇0,1 = i��0 + F�t���0,1 − iB�1,1 + i�0,0B ,

�̇1,0 = − i��0 + F�t���1,0 − iB†�0,0 + i�1,1B†. �A3�

Next we formally integrate the nondiagonal terms �̇0,1 and
�̇1,0 using the Leibnitz integral rule

d

dt
�

u�t�

v�t�

f�t,��d� = v��t�f„t,v�t�… − u��t�f„t,u�t�…

+ �
u�t�

v�t� �

�t
f�t,��d� , �A4�

and obtain

�0,1�t� = �
0

t

ei�0�t−��ei�f�t�−f�����− iB����1,1��� + i�0,0���B����d� ,

�1,0�t� = �0,1
* �t� , �A5�

where f�t�=�F�t�dt. We substitute these expressions into the
equations of the diagonal terms �̇0,0 and �̇1,1 and trace over
both the cold and hot thermal baths assuming the density
matrix can be decomposed at all times by ��t�=�c�h��t�.
Here � is the reduced density matrix operator and �


=e−�
H
 /Tr�e−�
H
�, 
=c ,h. Following the standard
Redfield-Bloch derivation �23�, i.e., the second order pertur-
bation theory combined with the assumption that bath corre-
lation functions decay rapidly on the time scale of the change
of �, we obtain the quantum master equation for the diagonal
reduced density matrix elements Pn=�n,n, n=0,1

Ṗ1 = P0�t��
0

t

ei�0�t−��ei�f�t�−f�����B���B†�t��d�

+ P0�t��
0

t

e−i�0�t−��e−i�f�t�−f�����B�t�B†����d�

− P1�t��
0

t

ei�0�t−��ei�f�t�−f�����B†�t�B����d�

− P1�t��
0

t

e−i�0�t−��e−i�f�t�−f�����B†���B�t��d�;

P0�t� = 1 − P1�t� . �A6�

In the Markovian limit we further extend the upper limit in
the integrals to infinity, and assume that bath correlation
functions do not depend on the initial time. Note that no
restrictions are imposed on the modulation term F�t�, e.g., in
general, it does not need to be periodic.

FIG. 7. Nonadiabatic heat pump. Cn=4/�n�18 meV, n
=1, 3 . . .9, An=0, �=0.5 meV, �0=40 meV, c=2.5 meV, h

=0.1 meV, �D
c =6 meV, �D

h =250 meV, Tc=200 K, and Th=300 K.
�Top� Shown are the TLS energy spacing modulation �left� and the
resulting TLS temperature �right�. The bottom panel displays the

heat currents Jc=Q̇c �full� and Jh=−Q̇h �dashed�.
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