ctops:
 Computing rigid body rotation in C user documentation

Ramses van Zon*
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

May 9, 2007

Abstract

This document describes how to use the functions defined in the C header file ctops.h and implemented in the file ctops.c. These functions can compute the exact rotation of an arbitrary rigid body, and have been written to be easy to use while being efficient.

Note: there is also an implementation in c++, which is described in doctops.pdf.

Contents

1 Introduction 2
2 Header file and linkage 2
3 Initialization 3
4 Initial conditions 4
5 Computing future rotations 4
6 Propagation 5
7 Example 5
Background references 7

[^0]
1 Introduction

Rigid body dynamics is encountered in many physical models, such as for molecules, polymers, robotics and even the computer game industry. The functions defined in ctops.h give an easy-touse implementation of the exact rotation for arbitrary rigid bodies.

Before explaining how to use the functions in ctops.h, it is necessary to explain a bit of the notation concerning rigid bodies.

A rigid body is a body in which the relative position of all its parts is fixed. This still allows for the body to translate and to rotate. For a free rigid body, translation is governed by the linear velocity \mathbf{V}, such that the position \mathbf{R}_{t} of the mass center of the body at time t is related to that at time 0 by $\mathbf{R}_{t}=\mathbf{R}_{0}+\mathbf{V} t$. This is so simple that there is no need to write a specialized C functions for translation. Therefore, ctops only deals with the rotational body of the motion.

The rotation, then, takes place relative to the center of mass. The body can be oriented in an arbitrary way. Suppose that a special reference orientation has been chosen. Then any other orientation can be obtained by rotating the body. A rotation can be represented by a 3×3 orthogonal matrix A, so this also represents the orientation. In this context, A is called an attitude matrix. If the position of a point on the body in the reference orientation is $\tilde{\mathbf{r}}$, then in the rotation orientation, its position is $A^{T} \cdot \tilde{\mathbf{r}}$, where A^{T} is the transpose of A.

In time, the attitude matrix A can change, but it will remain orthogonal. The change is governed by the angular velocity vector ω. For a body with angular velocity vector ω, the velocity of a point \mathbf{r} is $\omega \times \mathbf{r}$. Different from the velocities for translational motion, the angular velocity is not necessarily constant in time for a free body. The way it changes depends on the body inertial moment matrix. This matrix is symmetric and can be diagonalized. The orientation of the body in which the inertial moment matrix is diagonal will be taken as the reference orientation, and the resulting diagonal elements I_{x}, I_{y} and I_{z} are called the principal moments of inertia. The angular velocity vector is constant only if the principal moments of inertia are all the same. We then say that the body is "a spherical top" (as far as the rotation is concerned). Another kind of body is the symmetric top, for which two moments of inertia are the same. If the equal moments of inertia are smaller than the unequal one, the body is called "Oblate", while if the equal moments of inertia are larger than the unequal one, the body is called "Prolate". Finally, if all moments of inertia are different the body is said to be "Asymmetric". This nomenclature is used in ctops.h.

In all cases, the rotation of the body can be solved exactly, although the mathematics gets somewhat involved for an asymmetric body[1,2,3]. This, does not mean, however, that this solution cannot be implemented efficiently, and indeed, this is what ctops.h is does.

2 Header file and linkage

To use ctops, the following general procedure should be followed:

- The functions for asymmetric bodies need to evaluate elliptic functions and elliptic integrals. In the current implementation, these are computed using the GNU Scientific Library
(gsl), which is freely available at http://www.gnu.org/software/gsl/.

The ctops functions cannot be used if gsl is not installed!

- Include the header file ctops.h:
\#include "ctops.h"
- How to use the functions defined in ctops.h is explained in the next section.
- The implementation of these classes can be found in the source file "ctops.c", which needs to be compiled and linked with any program using tops.
- When compiling or linking your program, the gsl library will need to be linked in as well, using "-lgsl-lgslcblas". E.g., to compile testctops.c, use

```
cc testctops.c ctops.c -lm -lgsl -lgslcblas -o testtops
```

with the file ctops.h in the current directory.

3 Initialization

The calculation of the rotation of a general body can get rather involved. To have an efficient implementation, it is useful to precomputed certain quantities, and store them for later use. All variables that are treated in this way are taken together in a simple struct called Top. A pointer to this struct has to be given as a parameters to all the function in ctops.

The Top struct can be initialized in different ways, depending on the type of body (see Introduction) as follows:

```
Top sphere, prolate, oblate, asymtop, recurse;
DefineTop( &sphere, SphericalTop, Ix, Ix, Ix ); /* Ix = Iy = Iz */
DefineTop( &prolate ProlateTop, Ix, Iz, Iz); /* Ix < Iy = Iz */
DefineTop( &oblate, OblateTop, Ix, Ix, Iz); /* Ix = Iy < Iz */
DefineTop( &asymtop, AsymmetricTop, Ix, Iy, Iz); /* Ix < Iy < Iz */
DefineTop( &recurse, TopRecur, Ix, Iy, Iz)
```

Notes:

1. The arguments SphericalTop, ProlateTop, OblateTop, AsymmetricTop and RecurTop are of type enum TopType defined in ctops.h.
2. As the names suggest, SphericalTop signifies the computation of the rotation of a spherical top, ProlateTop that of a prolate symmetric top, TopOblate that of a oblate symmetric top, and TopAsymmetric that of an asymmetric Top.
3. For spherical top, a single moment of inertia is enough, but three can be specified. Only the first one is actually used. For the prolate and oblate tops, Iy is not used.
4. The ordering of the moments of inertia indicated above is required, i.e., the specified moments of inertia need to be given in ascending order.
5. The TopType RecurTop is a variant of AsymmetricTop which works only for small enough times, as explained below, but which is considerably faster than TopAsymmetric.

4 Initial conditions

Given a Top of any of the above mentioned types, one can set the initial angular velocity ω_{0} (denoted by omega0 in the code) and the initial attitude matrix A_{0} (simply A0), using

```
Vector omega0 = {1,2,3};
Matrix AO = {0, 1, 0,
    1, 0, 0,
    0, 0,-1};
Initialization( &top, &omega0, &AO );
```

Note that the structs Vector and Matrix simply contain the elements of vectors and matrices. Vector has elements x, y and z , while Matrix has $\mathrm{xx}, \mathrm{xy}, \mathrm{xz}, \mathrm{yx}, \mathrm{yy}, \mathrm{yz}, \mathrm{zx}, \mathrm{zy}$ and zz .

5 Computing future rotations

Once the moments of inertia have been specified and the initial conditions are set, the angular velocity ω and attitude matrix A at time t can be computed as follows:

```
Vector omega;
Matrix A;
double t = 1.5; // arbitrary time
Evolution( &top, t, &omega, &A );
printf("%f %f %f\n",
    omega.x, omega.y, omega.z,
    A.xx, A.xy, A.xz,
```

A.yx, A.yy, A.yz,
A.zx, A.zy, A.zz);

Note that one can request the angular velocity ω and attitude matrix A at several times without having to specify the moments of inertia or the initial conditions again.

6 Propagation

In some applications, one only needs to update the old ω and A to new ones a time interval $d t$ later. For this purpose, ctops.h contains a function Propagate, to be used as follows:

```
Vector omega = {1,2,3};
Matrix A = { 0, 1, 0,
    1, 0, 0,
    0, 0,-1 };
double t = 1.5;
Propagate( &top, t, &omega, &A );
printf("%f %f %f\n",
    omega.x, omega.y, omega.z,
    A.xx, A.xy, A.xz,
    A.yx, A.yy, A.yz,
    A.zx, A.zy, A.zz);
```

Note that after calling Propagate, the original value of omega and A are lost.

7 Example

```
#include <stdio.h>
#include "ctops.h"
void testTop( Top * top, const char* filename )
{
    FILE *f;
    double t;
    Vector omega, omega0 = { 1.0, -1.0, 0.5 };
    Matrix A, A0 = { 1,0,0,
```

```
0,1,0,
0,0,1};
    Initialization( top, &omega0, &A0 );
    f = fopen(filename, "w" );
    for ( t = 0.0; t < 12.0; t += 0.1 ) {
        Evolution( top, t, &omega, &A );
        fprintf(f, "%f %f %f\n",
                    t,
                            A.xx, A.xy, A.xz,
                            A.yx, A.yy, A.yz,
                            A.zx, A.zy, A.zz,
                            omega.x, omega.y, omega.z);
    }
    fclose(f);
}
int main()
{
    Top sphere, prolate, oblate, asymtop, recurse;
    double Ix = 1.0, Iy = 1.5, Iz = 2.0;
    DefineTop( &sphere , SphericalTop, Ix, Ix, Ix);
    DefineTop( &prolate, ProlateTop, Ix, Iz, Iz);
    DefineTop( &oblate, OblateTop, Ix, Ix, Iz);
    DefineTop( &asymtop, AsymmetricTop, Ix, Iy, Iz);
    DefineTop( &recurse, RecurTop, Ix, Iy, Iz);
    testTop( &sphere, "csphere.dat" );
    testTop( &prolate, "cprolate.dat" );
    testTop( &oblate, "coblate.dat" );
    testTop( &asymtop, "casymtop.dat" );
    testTop( &recurse, "crecurse.dat" );
    FreeTop( &sphere );
```

```
    FreeTop( &prolate );
    FreeTop( &oblate );
    FreeTop( &asymtop );
    FreeTop( &recurse );
}
```


Background references

[1] Lisandro Hernandez de la Pena, Ramses van Zon, Jeremy Schofield and Sheldon B. Opps, Discontinuous molecular dynamics for semi-flexible and rigid bodies, Journal of Chemical Physics 126, 074105 (2007).
[2] Ramses van Zon and Jeremy Schofield, Numerical implementation of the exact dynamics of free rigid bodies, Journal of Computational Physics, doi:10.1016/j.jcp.2006.11.019 (2007).
[3] Ramses van Zon and Jeremy Schofield, Symplectic algorithms for simulations of rigid-body systems using the exact solution of free motion, Physical Review E 75, 056701 (2007).
[4] The comments in ctops.c

[^0]: *rzon@chem.utoronto.ca

