
tops:
Classes for computing rigid body rotation

user documentation

Ramses van Zon∗

Chemical Physics Theory Group, Department of Chemistry, University of Toronto,

80 St. George Street, Toronto, Ontario M5S 3H6, Canada

May 9, 2007

Abstract

This document describes how to use the c++ Top classes defined in the header
file tops.h and implemented in the file tops.cc. These classes can compute the exact
rotation of an arbitrary rigid body, and have been written to be easy to use while
being efficient.

Note: there is also an implementation in C, which is described in docctops.pdf.

Contents

1 Introduction 2

2 Header file and linkage 2

3 Initialization 3

4 Initial conditions 4

5 Computing future rotations 4

6 Propagation 5

7 Example 5

Background references 6
∗rzon@chem.utoronto.ca

2 1 Introduction

1 Introduction

Rigid body dynamics is encountered in many physical models, such as for molecules, polymers,
robotics and even the computer game industry. The classes defined intops.hgive an easy-to-use
implementation of the exact rotation for arbitrary rigid bodies.

Before explaining how to use the classes in tops.h, it is necessary to explain a bit of the
notation concerning rigid bodies.

A rigid body is a body in which the relative position of all its parts is fixed. This still allows
for the body to translate and to rotate. For a free rigid body, translation is governed by the linear
velocity V, such that the positionRt of the mass center of the body at timet is related to that at
time 0 byRt = R0 +Vt. This is so simple that there is no need to write a specialized c++ class
for translation. Therefore,topsonly deals with the rotational body of the motion.

The rotation, then, takes place relative to the center of mass. The body can be oriented
in an arbitrary way. Suppose that a special reference orientation has been chosen. Then any
other orientation can be obtained by rotating the body. A rotation can be represented by a 3x3
orthogonal matrixA, so this also represents the orientation. In this context,A is called an attitude
matrix. If the position of a point on the body in the reference orientation isr̃ , then in the rotation
orientation, its position isAT · r̃ , whereAT is the transpose ofA.

In time, the attitude matrixA can change, but it will remain orthogonal. The change is
governed by the angular velocity vectorω. For a body with angular velocity vectorω, the velocity
of a pointr is ω× r . Different from the velocities for translational motion, the angular velocity is
not necessarily constant in time for a free body. The way it changes depends on the body inertial
moment matrix. This matrix is symmetric and can be diagonalized. The orientation of the body
in which the inertial moment matrix is diagonal will be taken as the reference orientation, and the
resulting diagonal elementsIx, Iy andIz are called the principal moments of inertia. The angular
velocity vector is constant only if the principal moments of inertia are all the same. We then
say that the body is “a spherical top” (as far as the rotation is concerned). Another kind of body
is the symmetric top, for which two moments of inertia are the same. If the equal moments of
inertia are smaller than the unequal one, the body is called “Oblate”, while if the equal moments
of inertia are larger than the unequal one, the body is called “Prolate”. Finally, if all moments
of inertia are different the body is said to be “Asymmetric”. This nomenclature is used for the
names of the Top classes in tops.h.

In all cases, the rotation of the body can be solved exactly, although the mathematics gets
somewhat involved for an asymmetric body[1,2,3]. This, does not mean, however, that this
solution cannot be implemented efficiently, and indeed, this is what tops.h is does.

2 Header file and linkage

To usetops, the following general procedure should be followed:

• The Top classes for asymmetric bodies need to evaluate elliptic functions and elliptic inte-

3 Initialization 3

grals. In the current implementation, these are computed using the GNU Scientific Library
(gsl), which is freely available athttp://www.gnu.org/software/gsl/.

The Top classes cannot be used if gsl is not installed!

• The Top classes use vectors and matrices defined in the header file vecmat3.h. While
tops.h includes this file automatically, it needs to be in the same directory as the tops.h
file.1 Vecmat3is an efficient implementation of three dimensional vectors and matrices
which is strongly recommended.2

The Top classes cannot be used if vecmat3.h cannot be found!

• Include the header file tops.h:

#include "tops.h"

• The classes Top, TopSpherical, TopProlate, TopOblate, TopAsymmetric and TopRecur and
are now defined and can be used as explained in the next section.

• The implementation of these classes can be found in the source file “tops.cc”, which needs
to be compiled and linked with any program using tops.

• When compiling or linking your program, the gsl library will need to be linked in as well,
using “-lgsl -lgslcblas”. E.g., to compile testtops.cc, use

c++ testtops.cc tops.cc -lm -lgsl -lgslcblas -o testtops

with the files tops.h and vecmat3.h in the current directory.

3 Initialization

The Top classes can be initialized as follows:

TopSpherical sphere (Ix); // Ix = Iy = Iz

TopProlate prolate(Ix, Iz); // Ix < Iy = Iz

TopOblate oblate (Ix, Iz); // Ix = Iy < Iz

TopAsymmetric asymtop(Ix, Iy, Iz); // Ix < Iy < Iz

TopRecur recurse(Ix, Iy, Iz);

Notes:
1or in a directory that is searched for header files by the compiler.
2See docvecmat3.pdf.

4 4 Initial conditions

1. These classes require arguments, i.e., one cannot define a Top without specifying its mo-
ments of inertia.

2. For spherical top, as single moment of inertia is enough, for the two types of symmetric
tops, one needs two, while in general three moments of inertia are required.

3. The ordering of the moments of inertia indicated above is required, i.e., the specified mo-
ments of inertia need to be given in ascending order.

4. As the names suggest, TopSpherical computes the rotation of a spherical top, TopProlate,
that of a prolate symmetric top, TopOblate that of a oblate symmetric top, and TopAsym-
metric that of an asymmetric Top. All of these classes are derived from a parent class Top,
in which the member functions discussed below are virtually overloaded.

5. The class TopRecur is a variant of TopAsymmetric which works only for small enough
times, as explained below, but which is considerably faster than TopAsymmetric.

4 Initial conditions

Given an objecttop of any of the above mentioned Top classes, one can set the initial angular
velocityω0 (denoted byomega0 in the code) and the initial attitude matrixA0 (simplyA0), using

Vector omega0 (1,2,3);

Matrix A0 (0, 1, 0,

1, 0, 0,

0, 0,-1);

top.Initialization(omega0, A0);

5 Computing future rotations

Once the moments of inertia have been specified and the initial conditions are set, the angular
velocity ω and attitude matrixA at timet can be computed as follows:

Vector omega;

Matrix A;

double t = 1.5; // arbitrary time

top.Evolution(t, omega, A);

cout << omega << A; // write out the result

Note that one can request the the angular velocityω and attitude matrixA at several times without
having to specify the moments of inertia or the initial conditions again.

6 Propagation 5

6 Propagation

In some applications, one only needs to update the oldω andA to new ones a time intervaldt
later. For this purpose, the Top classes contain a function Propagate, to be used as follows:

Vector omega (1,2,3);

Matrix A (0, 1, 0,

1, 0, 0,

0, 0,-1);

double t = 1.5;

top.Propagate(t, omega, A);

cout << omega << A; // write out the result

Note that after calling Propagate, the original value ofomega andA are lost.

7 Example

#include <fstream>

#include "tops.h"

using namespace std;

void testTop(Top & rotor, const char* filename) {
Vector omega0 (1.0, -1.0, 0.5);

Matrix A0 (1,0,0,

0,1,0,

0,0,1);

rotor.Initialization(omega0, A0);

ofstream f(filename);

for (double t = 0.0; t < 12.0; t += 0.1) {
Vector omega;

Matrix A;

rotor.Evolution(t, omega, A);

f << fixed << t

<< ’ ’ << A.row(0)

<< ’ ’ << A.row(1)

6 BACKGROUND REFERENCES

<< ’ ’ << A.row(2)

<< ’ ’ << omega

<< endl;

}
}
int main() {

double Ix = 1.0, Iy = 1.5, Iz = 2.0;

TopSpherical sphere (Ix); // Ix = Iy = Iz

TopProlate prolate(Ix, Iz); // Ix < Iy = Iz

TopOblate oblate (Ix, Iz); // Ix = Iy < Iz

TopAsymmetric asymtop(Ix, Iy, Iz); // Ix < Iy < Iz

TopRecur recurse(Ix, Iy, Iz);

testTop(sphere, "sphere.dat");

testTop(prolate, "prolate.dat");

testTop(oblate, "oblate.dat");

testTop(asymtop, "asymtop.dat");

testTop(recurse, "recurse.dat");

}

Background references

[1] Lisandro Hernandez de la Pena, Ramses van Zon, Jeremy Schofield and Sheldon B. Opps,
Discontinuous molecular dynamics for semi-flexible and rigid bodies, Journal of Chemical
Physics126, 074105 (2007).

[2] Ramses van Zon and Jeremy Schofield,Numerical implementation of the exact dynamics of
free rigid bodies, Journal of Computational Physics, doi:10.1016/j.jcp.2006.11.019 (2007).

[3] Ramses van Zon and Jeremy Schofield,Symplectic algorithms for simulations of rigid-body
systems using the exact solution of free motion, Physical Review E75, 056701 (2007).

[4] The comments intops.cc

	Introduction
	Header file and linkage
	Initialization
	Initial conditions
	Computing future rotations
	Propagation
	Example
	Background references

