
Documentation for Tops:
Classes for Computing Rigid Body Dynamics

version 2

Ramses van Zon∗

Chemical Physics Theory Group, Department of Chemistry, University of Toronto,

80 St. George Street, Toronto, Ontario M5S 3H6, Canada

May 26, 2009

Abstract

This document describes how to use the c++ Top classes defined in the
header file tops.h and implemented in the file tops.cc. These classes can
efficiently compute the exact rotational dynamics of an arbitrary rigid body
in the absence of forces, and have been written to be easy to use.

∗rzon@chem.utoronto.ca

Documentation tops version 2. Ramses van Zon May 29, 2009

2 CONTENTS

Contents

1 Introduction 3

2 Changes compared to version 1 4

3 Using tops 4

4 Initialization 5

5 Initial conditions 6

6 Computing rotational dynamics 6

7 Propagation 6

8 Example 7

9 Minimizing drift 8

10 Changing the precision 8

11 The classes 8
11.1 The abstract base class Top . 8
11.2 TopSymmetric . 9
11.3 TopOblate . 9
11.4 TopProlate . 10
11.5 TopAsymmetric . 10
11.6 TopRecur . 10

Background references 11

Documentation tops version 2. Ramses van Zon May 29, 2009

1 Introduction 3

1 Introduction

Rigid body dynamics is encountered in many physical models, such as for molecules,
polymers, robotics and even the computer game industry. The classes defined in tops
give an easy-to-use implementation of the exact rotation for arbitrary rigid bodies.

Before explaining how to use the classes in tops.h, it is necessary to explain a bit of
the notation concerning rigid bodies.

A rigid body is a body in which the relative positions of all its parts are fixed. This
still allows for the body to translate and to rotate. For a free rigid body, translation is
governed by the linear velocity V, such that the position Rt of the mass center of the
body at time t is related to that at time 0 by Rt = R0 +Vt. This is so simple that there is
no need to write a specialized c++ class for translation. For that reason, tops only deals
with the rotational body of the motion.

The rotation takes place relative to the center of mass. The body have an arbitraty
orientation (or “attitude”). Suppose that a special reference orientation has been chosen.
Then any other orientation can be obtained by rotating the body. A rotation can be
represented by a 3x3 orthogonal matrix A, which also represents the orientation. In this
context, A is called an attitude matrix. If the position of a point on the body in the
reference orientation is r̃ , then in the rotation orientation, its position is AT · r̃ , where AT

is the transpose of A.1

For a rotating rigid body the attitude matrix A changes in time, but it will always
remain orthogonal. The change is governed by the angular velocity vector ω. For a
body with angular velocity vector ω, the velocity of a point r is ω× r . Different from
the velocities for the velocity in translational motion, the angular velocity vector is not
necessarily constant in time even for a free body. How A changes in time depends on the
body inertial moment matrix. This matrix is symmetric and can be diagonalized. The
orientation of the body in which the inertial moment matrix is diagonal will be taken as
the reference orientation, and the resulting diagonal elements Ix, Iy and Iz are called the
principal moments of inertia. The angular velocity vector is constant only if the principal
moments of inertia are all the same. We then say that the body is “a spherical top” (as far
as the rotation is concerned). Another kind of body is the symmetric top, for which two
moments of inertia are the same. If the equal moments of inertia are smaller than the
unequal one, the body is called “oblate”, while if the equal moments of inertia are larger
than the unequal one, the body is called “prolate”. Finally, if all moments of inertia are
different the body is said to be “asymmetric”. This same nomenclature is used for the
names of the Top classes in tops.h.

In all cases, the rotation of the body can be solved exactly, although the mathematics
gets somewhat involved for an asymmetric body[1, 2, 3]. This does not mean, however,
that this solution cannot be implemented efficiently, and this is what tops does.

1The transpose is equal to the inverse of a rotation matrix.

Documentation tops version 2. Ramses van Zon May 29, 2009

4 2 Changes compared to version 1

2 Changes compared to version 1

• Elliptic integrals and functions needed to compute the dynamics of an asymmetric
top are now coded into tops.

• The GSL library is therefore no longer required.

• This also made the AsymmetricTop class much faster, because a lot of computations
could be combined.

• A bug in ProlateTop was fixed.

• The other Top classes perform as before.

• This second version has the capability to minimize drift (switched off by default).
The amount of drift left depends on the compiler and the computer architecture.

• There is no implementation of version 2 in c (yet).

3 Using tops

To use tops, the following general procedure should be followed:

• The Top classes use vectors and matrices defined in the header file vecmat3.h.
While tops.h includes this file automatically, it needs to be in the same directory
as the tops.h file.2 Vecmat3 is an efficient implementation of three dimensional
vectors and matrices which is strongly recommended.3

The Top classes cannot be used if vecmat3.h cannot be found!

• Include the header file tops.h:

#include "tops.h"

• The classes Top, TopSpherical, TopProlate, TopOblate, TopAsymmetric and TopRe-
cur and are now defined and can be used as explained in the next section.

• The implementation of these classes can be found in the source file “tops.cc”, which
needs to be compiled and linked with any program using tops.

• Compiling or linking your program, can for instance be done as follows (for test-
tops.cc in Sec. 8)

2or in a directory that is searched for header files by the compiler.
3See docvecmat3.pdf.

Documentation tops version 2. Ramses van Zon May 29, 2009

4 Initialization 5

c++ testtops.cc tops.cc -lm -o testtops

or, if drift correction is needed,

c++ testtops.cc tops.cc -DREFINE -lm -o testtops

with the files tops.cc, tops.h and vecmat3.h in the current directory.

4 Initialization

The Top classes can be initialized as follows:

TopSpherical sphere (Ix); // Ix = Iy = Iz

TopProlate prolate(Ix, Iz); // Ix < Iy = Iz

TopOblate oblate (Ix, Iz); // Ix = Iy < Iz

TopAsymmetric asymtop(Ix, Iy, Iz); // Ix < Iy < Iz

TopRecur recurse(Ix, Iy, Iz); // Ix < Iy < Iz, faster implementation

Notes:

1. These classes require arguments, i.e., one cannot define a Top without specifying
its moments of inertia.

2. Note that the Top classes will not find the moments of inertia (nor the body refer-
ence frame) of a given body, rather, these are needed as input.

3. For spherical top, as single moment of inertia is enough, for the two types of sym-
metric tops, one needs two, while in general three moments of inertia are required.

4. The ordering of the moments of inertia indicated above is required, i.e., the speci-
fied moments of inertia need to be given in ascending order.

5. As the names suggest, TopSpherical computes the rotation of a spherical top, Top-
Prolate, that of a prolate symmetric top, TopOblate that of a oblate symmetric top,
and TopAsymmetric that of an asymmetric Top. All of these classes are derived
from a parent class Top, in which the member functions discussed below are virtu-
ally overloaded.

6. The class TopRecur is a variant of TopAsymmetric which works only for small
enough times, as explained below, but which is considerably faster than TopAsym-
metric.

Documentation tops version 2. Ramses van Zon May 29, 2009

6 5 Initial conditions

5 Initial conditions

Given an object top of any of the above mentioned Top classes, one can set the initial
angular velocity ω0 (denoted by omega0 in the code) and the initial attitude matrix A0

(simply A0), using

Vector omega0 (1,2,3);

Matrix A0 (0, 1, 0,

1, 0, 0,

0, 0,-1);

top.Initialization(omega0, A0);

6 Computing rotational dynamics

Once the moments of inertia have been specified and the initial conditions are set, the
angular velocity ω and attitude matrix A at time t can be computed as follows:

Vector omega;

Matrix A;

double t = 1.5; // arbitrary time

top.Evolution(t, omega, A);

cout << omega << A; // write out the result

Note that one can request the the angular velocity ω and attitude matrix A at several
times without having to specify the moments of inertia or the initial conditions again.

7 Propagation

In some applications, one only needs to update the old ω and A to new ones a time
interval dt later. For this purpose, the Top classes contain a function Propagate, to be
used as follows:

Vector omega (1,2,3);

Matrix A (0, 1, 0,

1, 0, 0,

0, 0,-1);

double t = 1.5;

top.Propagate(t, omega, A);

cout << omega << A; // write out the result

Note that after calling Propagate, the original value of omega and A are lost and replaced
by their new values.

Documentation tops version 2. Ramses van Zon May 29, 2009

8 Example 7

Repeated application of Propagate can lead to drift in energy, angular momentum
and orthogonality of the A matrix, which is addressed in Sec. 9.

8 Example

#include <fstream>

#include "tops.h"

using namespace std;

void testTop(Top & rotor, const char* filename) {
Vector omega0 (1.0, -1.0, 0.5);

Matrix A0 (1,0,0,

0,1,0,

0,0,1);

rotor.Initialization(omega0, A0);

ofstream f(filename);

for (double t = 0.0; t < 12.0; t += 0.1) {
Vector omega;

Matrix A;

rotor.Evolution(t, omega, A);

f << fixed << t

<< ’ ’ << A.row(0)

<< ’ ’ << A.row(1)

<< ’ ’ << A.row(2)

<< ’ ’ << omega

<< endl;

}
}
int main() {

double Ix = 1.0, Iy = 1.5, Iz = 2.0;

TopSpherical sphere (Ix); // Ix = Iy = Iz

TopProlate prolate(Ix, Iz); // Ix < Iy = Iz

TopOblate oblate (Ix, Iz); // Ix = Iy < Iz

TopAsymmetric asymtop(Ix, Iy, Iz); // Ix < Iy < Iz

TopRecur recurse(Ix, Iy, Iz);

testTop(sphere, "sphere.dat");

testTop(prolate, "prolate.dat");

testTop(oblate, "oblate.dat");

testTop(asymtop, "asymtop.dat");

testTop(recurse, "recurse.dat");

}

Documentation tops version 2. Ramses van Zon May 29, 2009

8 9 Minimizing drift

9 Minimizing drift

This second version of tops has the capability to minimize drift in energy, angular mo-
mentum and orthogonality, using some (not all work) of the ideas of Vilmart[4], and
some addition least significant bit twiddling. This drift is due to cumulative effects of
round-off bias in the last significant digits which occurs when the Propagation method
is called in frequently repetion.

The drift is often so small that it is a negligable effect. Because correcting for drift
increases the computational cost, the drift correction code is turned off by default.

To switch on the drift corrections, define the switch “REFINE”. When switched on,
the drift is less than one bit per iteration (on average). How much drift is left depends
on the compiler and the machine that the code it run on.

10 Changing the precision

All top classes use the precision of the vecmat3 module, which is double precision by
default. This is achieved by defining a type DOUBLE, which defined in vecmat3.h to be
equal to double by default.

It is however easy to use floating point numbers of different precision, such as float
or long double. One only has to make sure DOUBLE is already #define’s as the correct
type before tops is called, i.e., by putting #define DOUBLE float before the #include

"vecmat3.h" in the file tops.h.

11 The classes

11.1 The abstract base class Top

class Top

{
public:

virtual void Initialization(const Vector& omega, const Matrix& A) = 0;

virtual void Evolution(DOUBLE t, Vector& omega, Matrix& A) = 0;

virtual void Propagation(DOUBLE dt, Vector& omega, Matrix& A) = 0;

virtual ~Top()

};
Below, only the public parts of the derived Top classes will be shown. There are five
derived classes:

Documentation tops version 2. Ramses van Zon May 29, 2009

11.2 TopSymmetric 9

1. TopSpherical : for spherical tops, for which Ix = Iy = Iz. Based on [1] and [2].

2. TopProlate : for prolate tops, for which Ix ¡ Iy = Iz. Based on Refs. [1] and [2].

3. TopOblate : for spherical tops, for which Ix = Iy ¡ Iz. Based on Refs. [1] and [2].

4. TopAsymmetric: for asymmetric tops, for which Ix ¡ Iy ¡ Iz. Based on Ref. [2].

5. TopRecur : also for asymmetric tops, but computed using a recursive scheme. Based
on Ref. [3].

The latter to use the arithmetic geometric scale to compute elliptic integral and functions
in a highly optimized fashion[5].

11.2 TopSymmetric

class TopSymmetric: public Top

{
public:

TopSymmetric(DOUBLE I);

void Initialization(const Vector& omega, const Matrix& A);

void Evolution(DOUBLE t, Vector& omega, Matrix& A);

void Propagation(DOUBLE dt, Vector& omega, Matrix& A);

~TopSymmetric()

};

11.3 TopOblate

class TopOblate: public Top

{
public:

TopOblate(DOUBLE Ix, DOUBLE Iz);

void Initialization(const Vector& omega, const Marix& A);

void Evolution(DOUBLE t, Vector& omega, Matrix& A);

void Propagation(DOUBLE dt, Vector& omega, Matrix& A);

~TopOblate()

};

Documentation tops version 2. Ramses van Zon May 29, 2009

10 11.4 TopProlate

11.4 TopProlate

class TopProlate: public Top

{
public:

TopProlate(DOUBLE Ix, DOUBLE Iz);

void Initialization(const Vector& omega, const Matrix& A);

void Evolution(DOUBLE t, Vector& omega, Matrix& A);

void Propagation(DOUBLE dt, Vector& omega, Matrix& A);

~TopProlate()

};

11.5 TopAsymmetric

class TopAsymmetric: public Top

{
public:

TopAsymmetric(DOUBLE Ix, DOUBLE Iy, DOUBLE Iz);

void Initialization(const Vector& omega, const Matrix& A);

void Evolution(DOUBLE t, Vector& omega, Matrix& A);

void Propagation(DOUBLE dt, Vector& omega, Matrix& A);

~TopAsymmetric()

};

11.6 TopRecur

class TopRecur: public Top

{
public:

TopRecur(DOUBLE Ix, DOUBLE Iy, DOUBLE Iz);

void Initialization(const Vector& omega, const Matrix& A);

void Evolution(DOUBLE t, Vector& omega, Matrix& A);

void Propagation(DOUBLE dt, Vector& omega, Matrix& A);

~TopRecur()

};

Documentation tops version 2. Ramses van Zon May 29, 2009

BACKGROUND REFERENCES 11

Background references

[1] Lisandro Hernandez de la Pena, Ramses van Zon, Jeremy Schofield and Sheldon B.
Opps, Discontinuous molecular dynamics for semi-flexible and rigid bodies, Journal
of Chemical Physics 126, 074105 (2007).

[2] Ramses van Zon and Jeremy Schofield, Numerical implementation of the exact dy-
namics of free rigid bodies, Journal of Computational Physics 225, 145 (2007).

[3] Ramses van Zon and Jeremy Schofield, Symplectic algorithms for simulations of
rigid-body systems using the exact solution of free motion, Physical Review E 75,
056701 (2007).

[4] G. Vilmart, Reducing round-off errors in rigid body dynamics, Journal of Computa-
tional Physics 227, 7083 (2008).

[5] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with formu-
las, graphs, and mathematical tables (Dover, New York, 1965).

Documentation tops version 2. Ramses van Zon May 29, 2009

	Introduction
	Changes compared to version 1
	Using tops
	Initialization
	Initial conditions
	Computing rotational dynamics
	Propagation
	Example
	Minimizing drift
	Changing the precision
	The classes
	The abstract base class Top
	TopSymmetric
	TopOblate
	TopProlate
	TopAsymmetric
	TopRecur

	Background references

