
User Documentation for the vecmat3
Vector and Matrix classes

(version 2.3)

Ramses van Zon∗

SciNet HPC Consortium and Chemical Physics Theory Group, Department of Chemistry

University of Toronto, Toronto, Ontario, Canada

February 2, 2011

Abstract

This document describes how to use the c++ Vector and Matrix classes defined in
the header file vecmat3.h. These classes offer a very convenient notation for three
dimensional vector and matrix algebra by using overloaded operators. Furthermore,
they are constructed to be numerically efficient through the internal use of expres-
sion templates, without interfering at the user level. As a result, one can convert
mathematical matrix-vector expressions straightforwardly into the corresponding c++
expression without having to worry about incurring an efficiency penalty.

∗rzon@scinet.utoronto.ca

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

2 Contents

1 Introduction 3
1.1 Changes in version 2 . 4
1.2 Changes between version 2 and version 2.3 4

2 Using the Vector and Matrix classes 5
2.1 Classes . 5
2.2 Header file . 5
2.3 Initialization methods . 7

2.3.1 Initialization through constructor parameters 7
2.3.2 Initialization through assignment 7
2.3.3 Initialization through a comma separated list 8
2.3.4 Initialization through member functions 8
2.3.5 Arrays . 9

2.4 Accessing the elements . 9
2.5 Operators . 10
2.6 Member functions . 10

2.6.1 DOUBLE nrm2() . 10
2.6.2 DOUBLE nrm() . 11
2.6.3 DOUBLE tr() . 12
2.6.4 DOUBLE det() . 12
2.6.5 Vector row(int i) . 12
2.6.6 Vector column(int j) . 12

2.7 Non-member functions . 12
2.7.1 Matrix Transpose(const Matrix & M) 12
2.7.2 Matrix Inverse(const Matrix & M) 12
2.7.3 Matrix Rodrigues(const Vector & v) 13
2.7.4 Matrix Dyadic(const Vector & a, const Vector & b) 13
2.7.5 Vector MTVmult(const Matrix & M, const Vector & v) 13
2.7.6 DOUBLE dist(const Vector & a, const Vector & b) 13
2.7.7 DOUBLE dist2(const Vector & a, const Vector & b) 13
2.7.8 DOUBLE distwithshift(const Vector&a,const Vector&b,const Vector&s) 13
2.7.9 DOUBLE dotProduct(const Vector & a, const Vector & b) 14
2.7.10 DOUBLE crossProduct(const Vector & a, const Vector & b) 14

3 Expressions 14

Background references 15

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

Introduction 3

1 Introduction

Vectors and matrices are used frequently in scientific computation (as well as in mod-
eling, games and movie rendering). Unfortunately, no built-in support for matrices and
vectors exists in c++. In principle, expressions involving matrices and vectors, such as

~a =~b+M ·~c

(with ~a, ~b and ~c vectors and M a matrix) can be implemented in c++ such that they
strongly resemble their mathematical notations, e.g.

Vector a,b;

Matrix M;

Vector c = a + M*b;

The technique used to accomplish such notational convenience is operator overloading,
whose straightforward implementation comes with a high computational cost due to the
creation of temporary objects.

A more efficient implementation is possible by using expression templates. Efficient
matrix-vector implementations are somewhat of a by-product of c++ templates, and this
shows in the awkward and complicated notation needed for general matrix-vector ma-
nipulations. In addition, the c++ standard is somewhat quirky on what is and is not
allowed when using templates.

These notational issues probably explain why there are far fewer template-based im-
plementations of matrices and vectors available. This is especially problematic for small
vectors and matrices of fixed size, for instance three-dimensional ones. These allow addi-
tional efficiency gains over general-size vectors and matrices (because loops over indices
can be replaced by explicit sums in the implementation). Two known implementations
are the TinyVector and TinyMatrix classes of Blitz++ and the ones by the same name
of tvmet. The former is not very developed, i.e., many operations that one would like
to have are not present, and indeed, the latter is aimed at fixing that. Still, tvmet lacks
some functionality that built-in types do have, for instance, TinyVector<3,double> v =

a+b; is not possible.
This is where vecmat3 comes in. It defines very efficient three dimensional vector and

matrix manipulations. The aim is to be able to use these vectors and matrices as if they
were built-in types, with which the same kind of expressions can be formed as can with
built-in types without worrying about template techniques, but also without substantial
losses compared to hard-coded element-by-element techniques.

vecmat3 uses expression templates and operator overloading. The restrictions of vec-
mat3 at present are that the elements of the vectors and matrices have to be of a single
type, which is double by default, and that only three-dimensional quantities are sup-
ported (as the name suggests).

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

4 1.1 Changes in version 2

1.1 Changes in version 2

The main difference between the first version of vecmat3 and the second is that the
matrices and vectors no longer need to be all of one type in a single application. In
addition to the standard Vector and Matrix classes of type DOUBLE (which defaults to
double) as in version 1, in version 2 one also has three-dimensional structures of any
type T at one’s disposal. To be more precise:

• vecmat3::Vector<T> and vecmat3::Matrix<T> are three-dimensional vector and
matrix classes whose elements are of type T.

For example, one can define a 3x3 matrix of integers as vecmat3::Matrix<int> m;

• This notation reflects two changes in the code:

– Almost all of the vecmat3 code is now contained in its own namespace called
vecmat3.

– The type is a template argument.

• In version 2 the standard Vector and Matrix classed are simply typedef’ed as equiva-
lent to vecmat3::Vector<DOUBLE> and vecmat3::Vector<DOUBLE>, whereas in ver-
sion 1 they were the only vectors and matrices available.

• The typedef’s of Vector and Matrix will be omitted if the compiler flag NOVECMAT3DEF

is defined.

1.2 Changes between version 2 and version 2.3

(Versions 2.1 and 2.2 were internal development stages.)

• Most functionality remained the same as in version 2, except that square bracket
support has been added. See Section 2.4.

• The header file now also enforces inlining the template functions for the GNU
(tested version 4.4.0) and the Intel compilers (tested versions 11 and 12), even
when no optimization is used.

• A major improvement of version 2.3 is that the library is now compatible with IBM’s
xlC compiler, which had trouble with some template constructions in versions 1
and 2. While I’m on the subject, one should compile with -O4 when using the
IBM compilers with vecmat3 in order to get all inlining done properly (in the latest
version, xlC 11, the options -O2 -qinline=level=6 suffice).

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

Using the Vector and Matrix classes 5

2 Using the Vector and Matrix classes

2.1 Classes

vecmat3 provides two general template classes within the namespace vecmat3:

template<typename T> vecmat3::Vector;

template<typename T> vecmat3::Matrix;

The template parameter T determines the type of the vector and matrix elements. Thus,
for a vector of integers one uses the type vecmat3::Vector<int>, while for a matrix of
doubles one would use vecmat3::Matrix<double>.

Since applications often need only one type of vector, a default vector type a and
default matrix type are defined outside the vecmat3 namespace, as follows

typedef vecmat3::Vector<DOUBLE> Vector;

typedef vecmat3::Matrix<DOUBLE> Matrix;

Here, DOUBLE is a predefined macro that should contain the type of the elements of the
default vectors and matrices. Thus, Vector v; defines a vector with elements of type
DOUBLE.

The type DOUBLE can be defined in three ways:

1. One can write an #define DOUBLE <something> before including the vecmat3.h

header, with <something> replaced by the desired type (e.g. float or double);

2. One can give a command line argument to the compiler to define DOUBLE to be
<something> (e.g. -DDOUBLE=float for g++);

3. One can do nothing, which makes DOUBLE default to double.

The definition of DOUBLE and the type definition of Vector and Matrix in the global
namespace does pollute the global namespace, and in many cases is not wanted. These
definitions are omitted if NOVECMAT3DEF is defined.

2.2 Header file

To use vecmat3, the following general procedure should be followed:

• If the elements of the vectors and matrices are to have a different type than double,
first #define their type as DOUBLE, e.g.

#define DOUBLE float

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

6 2.2 Header file

The type of the elements of a vector or matrix will be referred to as the “value type”
in this documentation.

• Include the header file vecmat3.h:

#include "vecmat3.h"

• The class Vector and the class Matrix are now defined and instances these classes
can be declared as follows:

Vector a;

Matrix R;

• One can explicitly use any other value type than DOUBLE type, e.g.

vecmat3::Vector<int> a;

vecmat3::Matrix<int> R;

If vectors and matrices of a specific value type are used a lot in an application, it
may be useful to typedef them to a shorter notation, e.g.

typedef vecmat3::Vector<int> intVector;

typedef vecmat3::Matrix<int> intMatrix;

intVector b;

intMatrix S;

• Alternatively, one can have no default global Vector and Matrix class defined, and
use only the namespace vecmat3, e.g.

#define NOVECMAT3DEF

#include "vecmat3.h"

vecmat3::Vector<double> a;

vecmat3::Matrix<double> R;

• In the above examples, the elements of the vectors and matrices are unspecified,
and likely contain garbage. In the next section, it will be explained how to initialize
these elements of these classes.

• Note that currently, operations between matrices and vectors of different value
types are not supported, even when mathematically this would make sense (such
as for int and double).

• However, it is possible to assign any kind of number to an element of any value
type, as long as a (standard) conversion to that type is known to the c++ compiler.
Thus, one may, for instance, assign an integer to an element of a vector, or one
may multiply a vector by 2 (i.e., one may write 2*v instead of being forced to write
2.0*v or 2.0f*v).

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

2.3 Initialization methods 7

2.3 Initialization methods

There are four ways to initialize a Vector or Matrix, which we will discuss by example. In
describing the initialization methods, the default Vector and Matrix types will be used;
the arbitrary type versions vecmat3::Vector<T> and vecmat3::Matrix<T> have the same
functionality.

2.3.1 Initialization through constructor parameters

Example:

Vector a(1.1, 3.0, -4.3);

Matrix R(1, 2, 3,

4, 5, 6,

7, 8, 9);

defines a Vector a and Matrix R with specified elements. Note that the first set of three
elements given to R comprise the top row of R, the second set of three the middle row
and the last set of three the bottom row.

If fewer than three or nine (for Vector and Matrix, respectively) number are given,
the unspecified elements are set to zero. Thus, one can define a zero Vector and Matrix
simply by

Vector a(0);

Matrix R(0);

2.3.2 Initialization through assignment

Example:

Vector b = a;

Matrix S = R;

defines a Vector b with the same elements as a, and a Matrix S with the elements as R.
The right hand sides may also be an expression involving Vector’s and Matrices. The

allowed expressions are explained in sections 2.5 and 3.

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

8 2.3 Initialization methods

2.3.3 Initialization through a comma separated list

Example:

Vector a;

a = 1.1, 3.0, -4.3;

Matrix R;

R = 1, 2, 3,

4, 5, 6,

7, 8, 9;

Note: this is the standard construction for Blitz++ and tvmet, and is achieved though
an overloaded comma operator. Not everybody likes overloading the comma operator,
because it may confuse the user (more than the above methods), and it is somewhat less
efficient than the method in 3.2.1.

Furthermore, it is not possible to use this method in the declaration, i.e., one cannot
write Vector a=1.1,3.0,-4.3; since c++ would consider this a declaration of 3.0 and
-4.3 as being of type Vector.

If not enough elements are given in the list, the remaining elements are set to zero.
Thus, one can write

b = 1;

to get the vector (1,0,0), and

R = 2;

to get the matrix

 2 0 0
0 0 0
0 0 0

.

2.3.4 Initialization through member functions

Example:

Vector a;

a.zero();

Matrix R;

R.zero();

also define a Vector and Matrix, respectively, with zero elements.
For a Matrix, there also is a member function one() to turn it into an identity matrix:

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

2.4 Accessing the elements 9

Matrix S;

S.one();

Furthermore, one can initialize a Matrix also per row or column, e.g.

R.setRow(0,a);

R.setRow(1,Vector(0,2,0));

R.setRow(2,Vector(0,2,-1));

S.setColumn(0,a);

S.setColumn(1,Vector(0,2,0));

S.setColumn(2,Vector(0,2,-1));

Note that rows and columns are numbered from 0 to 2.

2.3.5 Arrays

Example:

Vector a[3];

Matrix S[3];

Defines arrays of three Vectors and Matrices which are non-initialized. One can initialize
these arrays as follows

Vector a[3] = { Vector(1,2,3), Vector(3,4,5), Vector(5,6,7) };
Matrix S[3] = { Matrix(0), Matrix(1,2,3,4,5,6,7,8,9), Matrix(2) } ;

2.4 Accessing the elements

There are three ways to assess the elements of Vectors and Matrices:

1. Basic elements of Vectors and Matrices are generally accessible using the parenthe-
sis notation, i.e., the elements of a Vector a are a(0), a(1) and a(2), while those
of a Matrix R are R(0,0), R(0,1), . . . R(2,2).

2. Bracket notation can also be used, i.e., the elements of a Vector a are a[0], a[1]
and a[2], while those of a Matrix R are R[0][0], R[0][1], . . . R[2][2]. Note the
double brackets for matrix element access. This way, Vector and Matrix objects act
as if they are of type T[3] and T[3][3], respectively. Accessing the matrix elements
in this way may be moderately slower than the parenthesis method (depending on
the compiler).

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

10 2.5 Operators

3. Another way to access the elements is though the class members themselves, i.e.,
x, y and z for Vector, and xx, xy, xz, yx, yy, yz, zx, zy and zz for Matrix. This is
potentially more efficient, but cannot be used for expressions, i.e., (A+B).xx is not
possible, unless one writes Matrix(A+B).xx.

Furthermore, the rows and columns of a Matrix can be used as if they were vectors as
follows

Vector v = R.row(1);

Vector w = R.column(2);

2.5 Operators

The available algebraic operators for the Vector and Matrix classes are summarized in
table 1, in which ’Vector’ stands for ’const Vector &’ or a Vector-valued expression, and
’Matrix’ stands for ’const Matrix &’ or a Matrix-valued expression.

In addition, << operators are defined for output of Vectors and Matrices to ostreams,
such that

Vector a(1,2,3);

std::cout << a << endl;

would print the numbers 1, 2 and 3 with just a space in between.

Matrix M(1,2,3,4,5,6,7,8,9);

std::cout << M << endl;

would print a newline, the numbers 1, 2 and 3, another newline, the numbers 4, 5 and
6, another newline, the numbers 7, 8 and 9 and finally another newline.

2.6 Member functions

For any Vector, or Vector-valued expression, or for any Matrix, or Matrix-valued expres-
sion, the following properties are available as member functions:

2.6.1 DOUBLE nrm2()

This returns the sum of the squares of the elements, which is its norm squared. E.g.

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

2.6 Member functions 11

form description example mathematically
- Vector negative c = -a; ~c = −~a

Vector + Vector add c = a + b; ~c = ~a+~b
Vector - Vector subtract c = a - b; ~c = ~a−~b

T * Vector multiply with scalar c = d * a; ~c = d~a
Vector * T multiply with scalar c = a * d; ~c = ~ad
Vector / T divide by scalar c = a / d; ~c = ~a/d

Vector ^ Vector cross/outer product† c = a ^ b; ~c = ~a×~b
Vector * Vector dot/inner product‡ d = a * b; d = ~a ·~b

(Vector | Vector) dot/inner product‡ d = (a|b); d = ~a ·~b
- Matrix negative T = -S; T = −S

Matrix + Matrix add T = S + R; T = S+R
Matrix - Matrix subtract T = S - R; T = S−R

T * Matrix multiply with scalar T = d * S; T = dS
Matrix * T multiply with scalar T = S * d; T = Sd
Matrix / T divide by scalar T = S / d; T = S/d

Matrix * Matrix matrix-matrix product T = S * R; T = SR
Matrix * Vector matrix-vector product c = S * a; ~c = S~a
Vector += Vector add c += b; ~c = ~c+~b
Vector -= Vector subtract c -= b; ~c = ~c−~b
Vector *= DOUBLE multiply by scalar c *= d; ~c = d~c
Vector /= DOUBLE divide by scalar c /= d; ~c = ~c/d
Matrix += Matrix add T += R; T = T+R
Matrix -= Matrix subtract T -= R; T = T−R
Matrix *= DOUBLE multiply by scalar T *= d; T = dT
Matrix /= DOUBLE divide by scalar T /= d; T = T/d

† The ^ operator has rather low precedence, so often one has to write (a^b).
‡ Two operators are provided for the dot product, which do the exact same thing.

Table 1: Operators available for matrices and vectors with elements of type T.

Vector a(1,2,3.316625);

Matrix R(1,2,0,

2,0,2

1,1,1);

DOUBLE d1 = a.nrm2(); // will be equal to 16.0000014

DOUBLE d2 = R.nrm2(); // will be equal to 16

2.6.2 DOUBLE nrm()

This returns the norm of a Vector or Matrix, e.g.

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

12 2.7 Non-member functions

DOUBLE d3 = a.nrm(); // will be equal to 4.00000017

DOUBLE d4 = R.nrm(); // will be equal to 4

The following properties are for Matrices only:

2.6.3 DOUBLE tr()

This returns the trace of a Matrix, i.e., the sum of its diagonal elements. E.g.

DOUBLE d5 = R.tr(); // will be equal to 2

2.6.4 DOUBLE det()

This returns the determinant of a Matrix, e.g.

DOUBLE d6 = R.det(); // will be equal to -2

2.6.5 Vector row(int i)

This returns the ith row of a Matrix.

2.6.6 Vector column(int j)

This returns the jth column of a Matrix.

2.7 Non-member functions

In the definition of the following non-member functions, the specified return type are
effective ones. E.g. a return type of Matrix may return a Matrix-Expression when this is
more efficient. In any case, it can be treated as a Matrix in virtually all ways. Likewise,
if an argument is of Matrix type, a Matrix expression is also allowed.

2.7.1 Matrix Transpose(const Matrix & M)

Returns the transpose of the argument, which is a Matrix, e.g.

Matrix T = Transpose(R);

2.7.2 Matrix Inverse(const Matrix & M)

Returns the inverse of the argument, which is a Matrix, e.g.

Matrix T = Inverse(R);

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

2.7 Non-member functions 13

2.7.3 Matrix Rodrigues(const Vector & v)

Returns the Matrix-valued rotation matrix for a rotation along the axis given by the
direction of the Vector argument, with the angle equal to the norm of that Vector, e.g.

Matrix T = Rodrigues(a);

2.7.4 Matrix Dyadic(const Vector & a, const Vector & b)

Returns the Matrix-valued dyadic product of two arguments which are Vectors, e.g.

Matrix T = Dyadic(a,b);

2.7.5 Vector MTVmult(const Matrix & M, const Vector & v)

This simply returns Transpose(Matrix)*Vector.

2.7.6 DOUBLE dist(const Vector & a, const Vector & b)

Returns the length of the difference vector between a and b. This is a remnant of
earlier versions of the Vectorand Matrixclasses, and barely if at all more efficient than
(a-b).nrm().

2.7.7 DOUBLE dist2(const Vector & a, const Vector & b)

Returns the square length of the difference vector between a and b. This is a remnant of
earlier versions of the Vector and Matrix classes, and barely if at all more efficient than
(a-b).nrm2().

2.7.8 DOUBLE distwithshift(const Vector&a,const Vector&b,const Vector&s)

Returns the length of the difference vector between a and b shifted by s. This is a remnant
of earlier versions of the vector and Matrix classes, and barely if at all more efficient than
(a+s-b).nrm().

Finally, because the notation a*b and a^b for dot and cross product may be confusing,
the following equivalent alternatives are defined:

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

14 Expressions

2.7.9 DOUBLE dotProduct(const Vector & a, const Vector & b)

Returns the DOUBLE which is the dot, or inner, product of the two Vector arguments. It
is by definition equal to (Vector|Vector). Example:

DOUBLE d = dotProduct(a,b);

2.7.10 DOUBLE crossProduct(const Vector & a, const Vector & b)

Returns the Vector which is the cross, or outer, product of the two Vector arguments. It
is by definition equal to (Vector^Vector). Example:

Vector c = crossProduct(a,b);

3 Expressions

Using the above elementary operations and functions, complex expressions can be con-
structed just as for built-in type such as double. To be more specific, for all operator
expressions in table 1 on page 8, the arguments can be expressions themselves.

For example, one can write:

Vector r[2] = { Vector(1,4,5), Vector(2,3,4) };
Vector v[2] = { Vector(1,0,0), Vector(-1,0,0) };
Vector s(7,1,0);

Matrix A(1,0,0,0,1,0,0,-1,0);

DOUBLE t = (r[0]+2*A*(s^r[1])) | (v[1]-v[0]);

// alternatively:

//DOUBLE t = dotProduct(r[0]+2*A*crossProduct(s,r[1]), v[1]-v[0]);

Internally, the expressions are not computed directly via temporaries, but are com-
puted only upon assignment. As a result, the definitions of these operators and functions
in vecmat3.h is not as simple as e.g. Vector operator+(Vector&,Vector&). For that
reason, above we used Vector and Matrix wherever a Vector/Matrix or a Vector/Matrix
expression can occur. Never mind the implementation though, things work as expected.

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

BACKGROUND REFERENCES 15

Background references

[1] T. Veldhuizen, Expression Templates C++ Report, Vol. 7 No. 5 June
1995, pp. 26-31. See also http://ubiety.uwaterloo.ca/˜tveldhui/papers/Expression-
Templates/exprtmpl.html.
Reprinted in: S. B. Lippmann (ed.) C++ Gems (Cambridge University Press, 1998).

[2] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide (Addison-
Wesley, Boston, 2002).

[3] http://www.oonumerics.org/blitz

[4] http://tvmet.sourceforge.net

Documentation vecmat3 version 2.3. Ramses van Zon February 3, 2011

