A novel candidate for hydrogen storage: Ca-decorated zigzag C₃N nanotube

Farzad Molani a,*, Seifollah Jalili b, Jeremy Schofield d

a Department of Chemistry, Sanandaj Branch, Islamic Azad University, P. O. Box 6616935391, Sanandaj, Iran
b Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 1541849611, Tehran, Iran
c Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
d Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6

Article info
Article history:
Received 11 January 2016
Received in revised form 6 March 2016
Accepted 19 March 2016
Available online 8 April 2016

Keywords:
Hydrogen storage
Adsorption
Calcium decorated C₃N nanotube
First principle calculations

Abstract
In order to search high-capacity hydrogen storage media, first-principles calculations were performed. Ca-decorated on perfect and defective C₃N nanotube as a new adsorbent for H₂ molecules were studied. It was found that the Ca-decorated on defective nanotube can adsorb up to eight H₂ molecules with the average binding energy of 0.11 eV/H₂. Interaction of Ca atom with the nanotubes and H₂ molecules are explained by Dewar coordination and Kubas interaction, respectively. Furthermore, the binding energy of the Ca atom on the defective nanotubes at least two times larger than the perfect one. Hence, clustering of the Ca atom on the nanotubes can be prevented by defect region.

Introduction
Nowadays discovery of novel materials for sustainable, renewable, and clean energy as like as hydrogen is an interested research. Carbon-based nanomaterials have been widely studied for their application in hydrogen storage [1,2]. Since pristine carbon nanostructures are chemically too inert to be useful for practical hydrogen storage (HS) [3–5], it is necessary to active these nanostructures by coating, doping, and/or introducing defects [5–27]. Clustering of metal atoms is a major drawback in utilizing metal-coated nanostructures as HS materials which reduces the gravimetric and volumetric density [5,10,20].

Among metals considered, the Ca atom exhibits the most favorable hydrogen adsorption characteristics in terms of the binding energy (E_{bind}) and uptake capacity [10,11,17,28–34]. Because of a moderate cohesive energy (E_{coh}) for the Ca atom (i.e. ~1.84 eV/atom) [35], compare with other alkali earth metals (AEMs) and transition metals (TMs), the clustering of the Ca atoms can be effectively hindered by this proper energy. The E_{bind} of the Ca atom on carbon nanotube (CNT), graphene, and C₆₀, are almost 0.88 [10], 1.1 [33,36], and 1.3 eV/Ca [17], respectively. All these E_{bind} are less than the E_{coh} of the bulk Ca. Scientists showed that the clustering of the Ca atoms could be suppressed by doping or introducing defects [29,33,37]. Ao and Peeters showed that N-doped and applying

* Corresponding author. Tel.: +98 914 442 3308; fax: +98 87 33247713.
E-mail addresses: f.molani@iausdj.ac.ir (F. Molani), sjalili@kntu.ac.ir (S. Jalili), jmschof@chem.utoronto.ca (J. Schofield).
http://dx.doi.org/10.1016/j.ijhydene.2016.03.118
0360-3199/© 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
an electric field have catalytic effects on the hydrogenation of carbon nanostructures, which can be a promising HS media with reversible hydrogen adsorption/desorption [14,15,38]. By means of DFT calculations, Rao et al. have studied Ca-doped N-substituted defective graphene and its potential application in H₂ storage [27]. They determined that the N-edged defects in graphene can enhance the binding energy of metals [27]. Furthermore, Mananghaya showed that the N-doped CNT enhanced chemical functionalization of all TM's suggesting a considerable reduction of clustering of metal atoms over the metal decorated nanotube. Strong binding of hydrogen molecule to the TM's on N-doped CNT was observed [25]. In addition to above modifications, finding new backbone materials to increase the Ebind beyond the Ecoh is an alternative approach to avoid the clustering effect.

Multi-walled carbo-nitride nanotubes were synthesized by pyrolyzing ferrocene/melamine mixture [39]. Hales et al. have recently investigated structural and thermodynamic stability of small C₅N nanotubes with x = 1, 2, 3, 5, and 7 [40]. Furthermore, many studies on C₅N nanotube (C₅NNT) have newly been done [41–43]. Our previous study showed that defects have impact role on the structural and electronic properties of C₅NNT [41]. Unconstrained structure optimization of C₅NNT with an atom vacancy leads to the formation of a new bond, perpendicular to the tube axis and the system is reconstructed to a five-membered and a nine-membered ring with a dangling bond or under-coordinated atom (UA) just around the local defect region [41]. We also showed that the carbon vacancy (Cᵥ) defect is more stable than the nitrogen vacancy (Nᵥ) defect [41] and respect to CNT, graphene, C₆₀, and BC₇ is also the most favorable site to adsorption of the Ca atom [10,29,33,36]. Furthermore, center of the 4C ring in the C₅NNT is also appropriate site for the AMs [42]. The structural and electronic parameters for the Ca-decorated C₅NNT are listed in Table 1. In the perfect form, minimum distance (dmin) between the Ca atom and C and N atoms are 2.79 and 2.41 Å, respectively. Bond lengths of C₁−C₂ and C₂−N are elongated to 1.42 and 1.48 Å. These elongations are justified by the net CT about 0.33 |e| from the Ca atom to the nanotube. In both defective structures, Ca atom would rather to adsorb on nano-membered ring, as depicted in Fig. 1. From Table 1, new bond between Ca atom and nearest atom in Cᵥ and Nᵥ structures are about 2.22 and 2.26 Å, respectively. Since the nanotube gets some charges, bond lengths around the defect region are increased. The Ca atom on the Cᵥ and Nᵥ nanotubes lose 0.50 and 0.46 |e|, respectively.

Now, to discuss the chemical nature of the interaction of Ca atom with the nanotubes, the partial density of states (PDOS) of the complexes and calculated CT of the Ca atom are illustrated in Fig. 1 and Table 1, respectively. The results revealed that the energy gaps of the Ca@perfect, Ca@Cᵥ, and Ca@Nᵥ are 0.25, 0.64, and 0.06 eV, respectively. From CT and the existence of an unoccupied peak of the Ca atom above the Fermi level (see Fig. 1(I)−(III)), it can be deduced that the Ca atom in the system is in a cationic state and can act as a charge acceptor from other molecules such as hydrogen molecules. The induced positive charge of the Ca atom increases in the order of perfect < Nᵥ < Cᵥ, which correlated with their reactivity and the order of their Ebind, as interpreted from Table 1. The maximum CT and absolute value of Ebind were also obtained for the Ca@Cᵥ. As seen in Table 1, the Ca s orbital on the perfect, Cᵥ, and Nᵥ structures loses 0.60, 0.92, and 0.89 |e|, respectively. In other hand, the Ca d orbital gets 0.26, 0.40, and 0.41 |e| from the perfect, Cᵥ, and Nᵥ structures, respectively. Interestingly, the Ca p orbital doesn’t impact participate in the bonding mechanism. As interpreted from Fig. 1(I)−(III) and Table 1, the bonding originates by mixing of Ca 4s and 3d orbitals with the nanotubes 2p orbital, and simultaneously, there exists a donation and back donation between the metal and the nanotubes. Upon this findings, the bonding between the Ca atom and the nanotube obey Dewar

Results and discussion

Ca-decorated C₅NNT

The optimized structures of Ca atom on perfect and defective tubes are shown in Fig. 1. In the perfect case, the Ca atom would rather to adsorb on center of hexagon ring consisting of four C atoms and two N atoms (4C–2N), regardless of initial positions. Interestingly, center of hexagon ring in graphene, CNT, C₆₀, and BC₇ is also the most favorable site to adsorption of the Ca atom [10,29,33,36]. Furthermore, center of the 4C−2N ring in the C₅NNT is also appropriate site for the AMs [42].

The structural and electronic parameters for the Ca-decorated C₅NNT are listed in Table 1. In the perfect form, minimum distance (dmin) between the Ca atom and C and N atoms are 2.79 and 2.41 Å, respectively. Bond lengths of C₁−C₂ and C₂−N are elongated to 1.42 and 1.48 Å. These elongations are justified by the net CT about 0.33 |e| from the Ca atom to the nanotube. In both defective structures, Ca atom would rather to adsorb on nano-membered ring, as depicted in Fig. 1. From Table 1, new bond between Ca atom and nearest atom in Cᵥ and Nᵥ structures are about 2.22 and 2.26 Å, respectively. Since the nanotube gets some charges, bond lengths around the defect region are increased. The Ca atom on the Cᵥ and Nᵥ nanotubes lose 0.50 and 0.46 |e|, respectively.

Now, to discuss the chemical nature of the interaction of Ca atom with the nanotubes, the partial density of states (PDOS) of the complexes and calculated CT of the Ca atom are illustrated in Fig. 1 and Table 1, respectively. The results revealed that the energy gaps of the Ca@perfect, Ca@Cᵥ, and Ca@Nᵥ are 0.25, 0.64, and 0.06 eV, respectively. From CT and the existence of an unoccupied peak of the Ca atom above the Fermi level (see Fig. 1(I)−(III)), it can be deduced that the Ca atom in the system is in a cationic state and can act as a charge acceptor from other molecules such as hydrogen molecules. The induced positive charge of the Ca atom increases in the order of perfect < Nᵥ < Cᵥ, which correlated with their reactivity and the order of their Ebind, as interpreted from Table 1. The maximum CT and absolute value of Ebind were also obtained for the Ca@Cᵥ. As seen in Table 1, the Ca s orbital on the perfect, Cᵥ, and Nᵥ structures loses 0.60, 0.92, and 0.89 |e|, respectively. In other hand, the Ca d orbital gets 0.26, 0.40, and 0.41 |e| from the perfect, Cᵥ, and Nᵥ structures, respectively. Interestingly, the Ca p orbital doesn’t impact participate in the bonding mechanism. As interpreted from Fig. 1(I)−(III) and Table 1, the bonding originates by mixing of Ca 4s and 3d orbitals with the nanotubes 2p orbital, and simultaneously, there exists a donation and back donation between the metal and the nanotubes. Upon this findings, the bonding between the Ca atom and the nanotube obey Dewar

Computational details

First-principle calculations based on spin polarized density functional theory (DFT) were performed using the PWSCF code [44]. The exchange-correlation was described with the Perdew Burke Ernzerhof within the generalized-gradient approximation (GGA−PBE) [45]. The Monkhorst Pack meshes [46] of 1×1×9 were used in sampling the Brillouin zone of a tetragonal supercell of 20 A×20 A×17.08 Å containing 96 carbon atoms and 32 nitrogen atoms, with the length of c equal to twice the periodicity of the (8,0) nanotube. Energy cutoff for the plane waves was set to 600 eV. All the structures were fully relaxed until atomic forces were less than 0.01 eV/Å. Furthermore, the Ebind for the Ca atom to the nanotube and the Eads of H₂ molecules on the adsorbents are given by

\[E_{\text{bind}} = E_{\text{Ca@tube}} - (E_{\text{Ca}} + E_{\text{tube}}) \]

and

\[E_{\text{ads}} = (E_{\text{CaH}_2} + E_{\text{Ca@tube}}) - (E_{\text{CaH}_2} + E_{\text{Ca@tube}})/n \]

respectively, where \(E_{\text{Ca}} \), \(E_{\text{tube}} \), \(E_{\text{CaH}_2} \), \(E_{\text{Ca@tube}} \), and \(E_{\text{Ca@tube}} \) are the total energy of Ca atom, Ca on the nanotube, isolated H₂ molecule, the nanotube, and adsorbed system, respectively. n is the number of adsorbed H₂ molecules. In order to charge analysis, Löwdin method was used [47]. It is notice that a negative (positive) value for charge transfer (CT) indicates that atom loses (gain) charge density. Furthermore, the work function (Φ) is the minimum energy required to extract one electron from the surface to a point in the vacuum [35]. Field emission in semiconductors strongly depends on the Φ value [35].
coordination [48]. Moreover, the E_{bind} of the Ca atom on the perfect, C_v, and N_v structures are 1.17, 3.80, and 2.47 eV/Ca, respectively and exothermic. The E_{bind} of the Ca atom on the perfect tube is stronger than CNT [10,11], N-doped [11], graphene [33,36], MgO (100) [49], while is weaker than BC$_7$ [29], carbyne [30], B$_{80}$ [32], C$_{60}$ [50], and graphyne [51]. The E_{bind} of Ca to the perfect form is less than the E_{coh} of the bulk Ca. As a result, the Ca-cluster will form in practice which will affect on the gravimetric density of H$_2$. To solve this problem, we should introduce defects on the C$_3$NNT to increase the E_{bind} of the Ca beyond the E_{coh} of the Ca, thereby advancing the structural stability of the system without clustering. Compared with the experimental E_{coh} of the Ca bulk, the clustering of the Ca atom on the defective C$_3$NNT can be prevented. Based on the E_{bind}, the C_v structure is the best host material for the Ca atom. The large E_{bind} values demonstrate that newly formed Ca–N and Ca–C bonds are quite strong.

As found from Table 1, the difference in the Fermi level of the defective and non-defective C$_3$NNT in the presence and absence of the Ca atom was interpreted by the CT between the metal atom and the nanotube within the adsorption process. The Φ value for the perfect, C_v, and N_v structures was obtained 2.28, 2.15, and 2.20 eV, respectively. Electron emission from the nanotubes surface in the presence of an electric field is increasing by decreasing the Φ value [35]. Therefore, the Ca atom can increase the field emission current of the C$_3$NNT by reducing the Φ value.

Hydrogen adsorption on the Ca-decorated C$_3$NNT

To find high-capacity hydrogen storage materials, the Ca-decorated perfect and defective C$_3$NNTs were examined by sequentially adding individual H$_2$ molecules. The maximum number of adsorbed H$_2$ molecule per Ca atom in the perfect, C_v, and N_v structures are five (-0.08 eV/H$_2$), eight (-0.11 eV/H$_2$), and seven (-0.11 eV/H$_2$), respectively (see Fig. 2 and Table 2). As summarized in Table 2, average distance between Ca and H atoms and adsorption energy are increased and decreased, respectively, respect to those values in Table 3. Furthermore, the maximum E_{ads} was achieved by four, four, and three H$_2$ molecules adsorbed on the Ca@perfect, Ca@Cv, and Ca@Nv, respectively (see Fig. 3), as tabulated in Table 3. The results indicated that the pristine form in the presence of the Ca atom has a small E_{ads} (-0.09 eV/H$_2$) which is categorized as van der Waals (vdW) interaction. This energy is greater than the typical vdW interaction energy of -0.05 eV, but still smaller.

Table 1 – Calculated minimum distance of Ca atom with the nanotube (d_{min}(Ca-tube)) and carbon atom in pentagon ring (d_{min}(Ca–C)), bond length of UA to nearest carbon atom (L(UA–C)), bond length between carbon atoms in pentagon ring (L(Cp–Cp)), energy gap (E_{gap}), binding energy (E_{bind}), charge transfer of s, p, and d orbitals of the Ca atom ($CT(s)$, $CT(p)$, and $CT(d)$), respectively, and work function (Φ) for the Ca atom on C$_3$NNT. A negative value for CT indicates that the Ca atom lose charge density. Values in parenthesis are related to before Ca adsorption.

<table>
<thead>
<tr>
<th>System</th>
<th>d_{min}(Ca-tube) (Å)</th>
<th>d_{min}(Ca–C) (Å)</th>
<th>L(UA–C) (Å)</th>
<th>L(Cp–Cp) (Å)</th>
<th>E_{gap} (eV)</th>
<th>E_{bind} (eV)</th>
<th>$CT(s)$</th>
<th>$CT(p)$</th>
<th>$CT(d)$</th>
<th>Φ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca@perfect</td>
<td>2.41</td>
<td>2.25</td>
<td>1.43 (1.38)</td>
<td>1.46 (1.40)</td>
<td>0.25 (0.32)</td>
<td>-1.17</td>
<td>-0.60</td>
<td>+0.01</td>
<td>+0.26</td>
<td>-1.82</td>
</tr>
<tr>
<td>Ca@Cv</td>
<td>2.22</td>
<td>2.45</td>
<td>1.41 (1.35)</td>
<td>1.55 (1.51)</td>
<td>0.64 (0.10)</td>
<td>-3.8</td>
<td>-0.92</td>
<td>+0.02</td>
<td>+0.40</td>
<td>-1.78</td>
</tr>
<tr>
<td>Ca@Nv</td>
<td>2.26</td>
<td>2.44</td>
<td>1.41 (1.35)</td>
<td>1.55 (1.51)</td>
<td>0.06 (0.26)</td>
<td>-2.47</td>
<td>-0.89</td>
<td>+0.02</td>
<td>+0.41</td>
<td>-1.61</td>
</tr>
</tbody>
</table>
Structural parameters for the structures with the maximum adsorption energy. Calculated bond length in H_2 $L_{av}(H−H)$, and adsorption energy (E_{ads}).

<table>
<thead>
<tr>
<th>System</th>
<th>d_{av}(Ca−H) (Å)</th>
<th>$L_{av}(H−H)$ (Å)</th>
<th>E_{ads} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca@perfect + 5H$_2$</td>
<td>2.73</td>
<td>0.76</td>
<td>−0.08</td>
</tr>
<tr>
<td>Ca@Cv + 8H$_2$</td>
<td>3.15</td>
<td>0.75</td>
<td>−0.11</td>
</tr>
<tr>
<td>Ca@N$_v$ + 7H$_2$</td>
<td>3.06</td>
<td>0.75</td>
<td>−0.11</td>
</tr>
</tbody>
</table>

than the requirement for the storage near room temperature around 0.20 eV [16]. As is well-known, the GGA reduces the absolute E_{ads} about 25% [16,52]. By consideration of this deviation, the actual E_{ads} is expected to be somewhat around −0.09, −0.18, and −0.17 eV/H$_2$ for the Ca@perfect, Ca@Cu, and Ca@N$_v$, respectively. Nguyen et al. showed that the average E_{ads} of H$_2$ on the Ca-decorated CNT is in the range of 0.08−0.13 eV/H$_2$ [16]. Interestingly, the number of H$_2$ adsorbed on the Ca atom on the CV structure almost 1.6 times more than on the Ca atom on mono-vacancy CNT [10]. Compare with Ca-decorated graphene, CNT, C$_{60}$, BC$_2$, BC$_3$N, boron sheet, the C$_3$NNT seems to be a suitable candidate for hydrogen storage purpose [10,17,29,33,34,37].

Turning now to the bonding mechanism and CT between the complexes and H$_2$ molecules, as indicated in Table 3, a donation (i.e. hybridization between the occupied H$_2$ σ orbital and the empty Ca d orbital) and back-donation (i.e. the hybridization between the occupied Ca s and d orbitals and the empty H$_2$ antibonding (σ^*) orbital) have been occurred in the perfect form. Since the Ca atom loses more electrons in the Ca@Cu (26% of valence electrons) and Ca@N$_v$ structures (23% of valence electrons), the Ca atom just prefers to get electrons from the neighboring atoms. Therefore, donation and back-donation mechanism cannot be observed between H$_2$ molecules and the Ca@Cu and Ca@N$_v$ complexes. Longer distance between H$_2$ molecules and the Ca atom in comparison with the titanium (Ti) as a TM can be interpreted by above descriptions. The nearest distances between Ca atom and a H atom in H$_2$ molecules vary between 2.41 and 2.74 Å whereas the minimum distance between Ti atom to H atom are from 1.72 to 1.95 Å [5,12]. The separation of H atoms in H$_2$ molecules is much smaller than that of the TM atom case (typically more than 25%) [5,12]. The average bond lengths of H$_2$ molecules on the Ca-perfect, Ca@Cu, and Ca@N$_v$ are 0.77, 0.76, and 0.76 Å, respectively, which are slightly stretched from the isolated H$_2$ molecule (0.75 Å).

For deep understanding, PDOS can help us to analysis of orbital hybridization between adsorbent and adsorbate. As shown in Fig. 3 (left panel), the H$_2$ molecules are binded with the complexes via the hybridization of the d states of the Ca atom with the H$_2$ states. This hybridization was observed for all the three cases. As a result, these interactions can be explained by Kubas interaction. In Fig. 3(a) peaks in bottom and above Fermi level confirmed that a donation and back donation in the complex are occurred. The peaks center

<table>
<thead>
<tr>
<th>System</th>
<th>d_{min}(Ca-nanotube) (Å)</th>
<th>d_{av}(Ca−H) (Å)</th>
<th>$L_{av}(H−H)$ (Å)</th>
<th>E_{ads} (eV)</th>
<th>CT (p)</th>
<th>CT (d)</th>
<th>CT (Ca)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca@perfect + 4H$_2$</td>
<td>2.40</td>
<td>2.45</td>
<td>0.77</td>
<td>−0.09</td>
<td>−0.57</td>
<td>0.00</td>
<td>−0.53</td>
</tr>
<tr>
<td>Ca@Cv + 4H$_2$</td>
<td>2.25</td>
<td>2.59</td>
<td>0.76</td>
<td>−0.15</td>
<td>−0.03</td>
<td>0.00</td>
<td>−0.14</td>
</tr>
<tr>
<td>Ca@N$_v$ + 3H$_2$</td>
<td>2.28</td>
<td>2.64</td>
<td>0.76</td>
<td>−0.13</td>
<td>−0.01</td>
<td>0.00</td>
<td>−0.11</td>
</tr>
</tbody>
</table>

Fig. 2 – The optimized structures of (a) Ca@perfect + 5H$_2$, (b) Ca@Cv + 8H$_2$, (c) Ca@N$_v$ + 7H$_2$. Gray, blue, white, and green colors are represented carbon, nitrogen, hydrogen, and calcium atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
around –0.5 to 0 eV correspond to the hybridization of the Ca 3d with the H2 σ* orbitals. As shown in Fig. 3 (b) and (c), there aren’t any significant peaks bottom Fermi level. In other hand, strong hybridization is evident in range of 1–3 eV. Therefore, our analysis showed that the large E_{ads} is related to the structures with the most hybridization between frontier orbital molecules.

Conclusion

In brief, we demonstrated the possibility of adsorption of the Ca atom on the perfect and defective C3NNT. The results showed that the new complexes can serve as a high-capacity hydrogen storage medium. The electronic and structural parameters were obtained. Interaction between Ca atom and the nanotubes and H2 molecules are explained by Dewar coordination and Kubas interaction, respectively. It is noted that, the Ca atom has a much lower tendency for clustering on the defective nanotubes. In order to hydrogen storage, we encourage the experimental scientists to synthesize these nanomaterials that may operate at ambient condition.

Acknowledgments

Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund – Research Excellence; and the University of Toronto. Further, we are grateful to Sanandaj Branch, Islamic Azad University Council for the financial support of this research.

References

