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ABSTRACT
Active colloidal particles that are propelled by a self-diffusiophoretic mechanism are often described by Langevin equations that are either
postulated on physical grounds or derived using the methods of fluctuating hydrodynamics. While these descriptions are appropriate for
colloids of micrometric and larger size, they will break down for very small active particles. A fully microscopic derivation of Langevin
equations for self-diffusiophoretic particles powered by chemical reactions catalyzed asymmetrically by the colloid is given in this paper. The
derivation provides microscopic expressions for the translational and rotational friction tensors, as well as reaction rate coefficients appearing
in the Langevin equations. The diffusiophoretic force and torque are expressed in terms of nonequilibrium averages of fluid fields that satisfy
generalized transport equations. The results provide a description of active motion on small scales where descriptions in terms of coarse
grained continuum fluid equations combined with boundary conditions that account for the presence of the colloid may not be appropriate.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020553., s

I. INTRODUCTION

Active matter systems can take many forms, ranging from those
whose active agents are micro-organisms or synthetic colloids to
active materials and gels, among many others.1–6 Since active mat-
ter is not at equilibrium, its properties often differ markedly from its
equilibrium analogs, and this fact has prompted investigations that
explore the mechanisms by which such systems function and their
possible applications.

Here, we consider active colloidal particles that are self-
propelled through a diffusiophoretic mechanism where chemical
reactions, maintained out of equilibrium, take place on a catalyst
that is asymmetrically distributed on the colloid and produce con-
centration gradients in reactants and products.7–16 Interactions of
the colloid with chemical species under these nonequilibrium con-
ditions give rise to fluid flows in the vicinity of the colloid as a
consequence of momentum conservation, leading to propulsion of
the active particle.

Active colloidal particles with micrometer sizes are frequently
considered in experiments17–21 so that continuum descriptions of
the fluid in which they move are adequate; however, on this length
scale, thermal fluctuations cannot be neglected. As a result, stochas-
tic descriptions, usually in the form of Langevin equations, are used
to describe the motions of these particles. In its simplest form,
the Langevin equation that describes the evolution of the veloc-
ity V of an active colloidal particle with mass M propelled by a
self-diffusiophoretic mechanism is written as22

M
d
dt
V = Fsd − ζtV + Ffl, (1)

where ζ t is a friction coefficient, Ffl is a random force, and the
new ingredient that distinguishes this equation from that for sim-
ple equilibrium Brownian motion is Fsd, the diffusiophoretic force.
Under most conditions, the inertial term on the left-hand side of
Eq. (1) can be neglected for micrometric particles in condensed

J. Chem. Phys. 153, 124104 (2020); doi: 10.1063/5.0020553 153, 124104-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0020553
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0020553
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0020553&domain=pdf&date_stamp=2020-September-22
https://doi.org/10.1063/5.0020553
https://orcid.org/0000-0002-6420-725X
https://orcid.org/0000-0001-5366-559X
https://orcid.org/0000-0003-3804-2110
https://orcid.org/0000-0002-4652-645X
mailto:bparobertson@gmail.com
mailto:jeremy.schofield@utoronto.ca
mailto:gaspard@ulb.ac.be
mailto:r.kapral@utoronto.ca
https://doi.org/10.1063/5.0020553


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

phases, and the overdamped limit of this equation is sufficient. The
expression for the diffusiophoretic force, or the corresponding dif-
fusiophoretic velocity, Vsd = Fsd/ζ t in overdamped descriptions, is
often simply postulated or derived23 from continuum models of the
fluid subject to boundary conditions that account for coupling to the
colloid.

On smaller nanometer or even angstrom scales, continuum
descriptions will break down since the dimensions of fluid parti-
cles may no longer be negligible on the scale of the colloid size. In
these cases where the molecular nature of the fluid manifests itself
in the vicinity of the colloid, it is difficult to describe fluid–colloid
interactions through boundary conditions. Active colloids with lin-
ear dimensions on the order of a few tens of nanometers have been
studied in the laboratory.24,25 While motions of these very small
active particles are dominated by thermal noise, the characteristics
of active motion persist and are observable. In addition, molecular
dynamics simulations of very small active dimer colloids with linear
dimensions of a few nanometers exhibit features of active motion
due to catalytic chemical reactions on part of their surface.26 Even
for these very small particles, the local fluid velocity fields, obtained
by extensive averaging to remove thermal noise effects, show flow
patterns that are characteristic of self-diffusiophoresis. This feature
is reminiscent of the fluid velocity fields observed in early molec-
ular dynamics simulations of tagged particle motion that lead to a
long-time power law decay of velocity correlations.27,28 Such collec-
tive solvent motions contribute to the values of diffusion coefficients
and form the microscopic basis for Stokes law relating the frictional
force on the colloid to the viscosity of the solvent.29–31 In a similar
way, the microscopic flow fields seen in the vicinities of tiny active
particles point to the presence of coupling to fluid collective modes
with hydrodynamic character and the operation of a diffusiophoretic
mechanism on molecular scales.

In order to study Brownian motion on very small scales where
continuum descriptions break down, a molecular perspective must
be adopted, and molecular derivations of Langevin equations for
inactive colloidal particles have been carried out. Perhaps the most
complete description is that of Mazur and Oppenheim32 where
the statistical properties of the noise are determined for a massive
Brownian particle in an equilibrium bath. Such derivations have
been extended to situations where the fluid in which the Brown-
ian particle moves is subjected to constraints that drive it out of
equilibrium.33,34

Similarly, to study active motion on very small scales, a molec-
ular description is needed where the particulate nature of the solvent
is taken into account, and assumptions on the large relative colloid to
solute size are relaxed. In this paper, we present a molecular deriva-
tion of the Langevin equations that describe the translational and
rotational dynamics of a rigid active self-diffusiophoretic colloidal
particle in a nonequilibrium environment. Since the system must be
out of equilibrium for active motion to take place, we make use of a
statistical mechanical formulation that accounts for the constraints
that maintain the system in a nonequilibrium state.

A Langevin description of the translational and orienta-
tional dynamics of a colloidal particle is obtained from the equa-
tions of motion for the entire system by projecting out the bath
degrees of freedom. Because the bath is in a nonequilibrium
state, a time-dependent projection operator formalism is required,
where the projection operator averages dynamical variables over a

nonequilibrium bath density that depends conditionally on the pres-
ence of a fixed colloid. The nonequilibrium density is expressed
in terms of a local equilibrium density containing time-dependent
local thermodynamic fields conjugate to microscopic hydrodynamic
density fields. The conjugate fields are defined self-consistently by
constraint conditions that require the nonequilibrium averages of
the hydrodynamic densities to be given exactly at all points in the
system by averages over the local equilibrium density.

In addition, since our description is fully microscopic, we show
how to include catalytic reactive dynamics in a way that treats the
reactive chemical species at a molecular level. The resulting general-
ized Langevin equations serve the dual functions of describing active
diffusiophoretic dynamics on molecular scales and providing micro-
scopic expressions for the transport properties that enter Langevin
descriptions on larger scales.

Section II specifies the system comprising the colloid and its
fluid environment, gives an expression for its Hamiltonian, and
presents the Liouville equations that govern its evolution. Chemi-
cal species are defined in Sec. III in terms of microscopic reaction
coordinates and species variables that depend on the internal coor-
dinates of the reactive molecules. The densities and constraints that
characterize and determine the nonequilibrium state of the system
are presented in Sec. IV. The derivation of the generalized Langevin
equations using nonequilibrium time-dependent projection opera-
tor methods is given in Sec. V, while in Sec. VI, it is shown how these
general equations yield the Langevin equations for the linear and
angular momenta of the active colloid. The diffusiophoretic force
and torque that are responsible for the active motion are further dis-
cussed in Sec. VII, and Sec. VIII provides a link between the micro-
scopic and continuum theories. Section IX gives the conclusions of
this study. Additional details of the calculations are presented in
Appendixes A–C.

II. SYSTEM AND DYNAMICS
The physical system considered here consists of a single rigid

colloid of arbitrary mass distribution and total mass M immersed
in a multi-component fluid of molecules of mass m.35 The fluid is
composed of reactive molecules dilutely dispersed in a solvent in
contact with reservoirs that isothermally feed and remove species
from the system at boundaries that are spatially distant from the col-
loid. A typical configuration of the physical system consists of NR
molecules of the reactive species R and NS solvent molecules S, with
NS≫NR. These fluid species are denoted by ν ∈ {S, R}. Each reactive
molecule i with total mass m contains na chemically bound atoms
with masses {mk|k = 1, 2, . . ., na} and nuclear positions and momenta
xnai = (r(1)i,p(1)i, . . . , r(na)i,p(na)i) = (r

na
i ,pnai ). The coordinates and

momenta of the collection of the NR reactive molecules are denoted
by xNR

m = (x
na
1 , . . . , xnaNR

) = (rNR
m ,pNR

m ). While the solvent molecules,
also taken to have mass m for simplicity, can be described in a sim-
ilar way, their internal degrees of freedom will play no role in this
work, and only their center of mass positions and momenta will be
considered, xNS = (rNR+1,pNR+1, . . . , rNR+NS ,pNR+NS

) = (rNS ,pNS).
The spherical colloid has a total of ns catalytic C and noncat-

alytic N sites on its surface. The distribution of these sites on the sur-
face is left arbitrary at this point and may be chosen to describe active
colloids with various properties. For instance, if the catalytic sites are
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confined to one hemisphere, the colloid is a Janus particle, while hol-
low silica colloids whose catalytic activity is due to enzymes attached
to their surfaces often have an irregular distribution of catalytic
regions.36 Although it is feasible to treat the internal motions of the
components of the colloid to allow for energy exchange between the
internal degrees of freedom of the colloid and the surrounding fluid
molecules, we will assume that the small and rapid internal fluctua-
tions of the positions of the components of the colloid around their
equilibrium values are not physically important in an isothermal sys-
tem. For the rigid model, the positions of the sites relative to the
center of the colloid, Sα(R), are at a fixed distance from the center of
the colloid and can be written as Sα(R) ≡ Sα − R = AT

⋅ S̃α, where
AT is a rotation matrix known as the attitude matrix that converts
vectors between the body-fixed and laboratory frames of reference
and S̃α are constant vectors specifying the location of a site α relative
to the center of the colloid in the body-fixed frame.37,38 The rota-
tion matrix AT and its inverse A are specified by a set of arbitrary
Euler orientational angles θ. In general, the active colloid need not
be significantly larger than the solvent in which it moves. Figure 1
shows the type of active colloid, reactive molecules with an internal
structure, and structureless solvent molecules comprising the system
under study.

FIG. 1. Illustration showing the components of the system: The NS structureless
solvent particles S are represented by yellow spheres (the solvent is a dense fluid
but only a few solvent molecules are shown in this visualization), the NR reac-
tive molecules R of species A (red) and B (blue) are composed of na atoms, and
the colloid possesses both the catalytic (red) and noncatalytic (blue) sites. In this
graphic, the interaction sites are configured to represent a spherical colloid com-
prised of irregularly distributed catalytic and noncatalytic sites similar to that in
enzyme-powered active colloids, but other geometries and distributions can be
considered. In this figure, we show the distance rα

(k)i of nucleus k in molecule i
of species A from the colloid site α. This nucleus interacts with the colloid site α
through the intermolecular potential Vkb(rα(k)i), where b denotes whether the site
is catalytic C or noncatalytic N. A similar notation is used for reactive species B,
while the distance of molecule m of the chemically inert solvent S from colloid site
β is rβm.

In writing the sums over particles, it is convenient to define
indicator functions Θν

i where Θν
i = 1 if molecule i is species ν

and Θν
i = 0 otherwise. Using this notation to determine whether

molecule i is a solvent molecule or a reactive solute, the nuclear
Hamiltonian for a system with N fluid molecules may be written as

H =
P2

2M
+ Krot +

N

∑
i=1

ΘS
i
p2
i

2m
+

N

∑
i=1

ΘR
i Hmi

+Uf(r
NS , rNR

m ) + UI(R, rNS , rNR
m ). (2)

This Hamiltonian is the sum of the translational and rotational
kinetic energies of the colloid, the kinetic energies of the centers
of mass of the NS solvent molecules, and the sum of the reactive
molecule Hamiltonians,

Hmi =
na
∑
k=1

⎛

⎝

p2
(k)i

2mk
+ Vm(rnai )

⎞

⎠
, (3)

where Vm(rnai ) is the potential function for the nuclei in chemically
bonded molecule i. Interactions among the fluid molecules are given
by U f, while UI describes the interactions of the fluid particles with
the colloid.

In the laboratory frame, the time derivative of the relative site
position vector Sα(R) = AT

⋅S̃α is given in terms of the angular veloc-
ities ω by Ṡα = ω∧ Sα(R) = θ̇T ⋅∇θAT

⋅A ⋅ (Sα −R), from which one
finds that the angular velocities are related to time derivatives of the
angles by ω = NT

⋅ θ̇, where the elements of the matrix N are

Nab =
1
2
ϵbcdAec∇θaAed. (4)

Here, ϵbcd is the Levi-Civita symbol, and the Einstein convention of
a sum over repeated indices has been used. The rotational kinetic
energy of the colloid is39

Krot =
1
2
ωT
⋅ Im ⋅ ω =

1
2
θ̇T ⋅M ⋅ θ̇, (5)

where Im is the moment of inertia tensor in the laboratory frame and
the matrix M = N ⋅ Im ⋅NT . Defining the generalized momentum Π
conjugate to the angles θ as Π = ∂Krot/∂θ̇ =M ⋅ θ̇, the total Hamilto-
nian in Eq. (2) for the system with colloidal phase space coordinates
X = (R, P, θ, Π) can now be written as

H =
P2

2M
+

1
2
ΠT
⋅M−1

⋅Π + H0, (6)

which defines H0, the bath Hamiltonian in the presence of the fixed
colloidal particle. It will play a central role in the development that
follows.

The bath HamiltonianH0 contains theVm,U f, andUI potential
functions. While the potential function for the chemically bonded
atoms in a molecule, Vm(rnai ), is generally a many-body potential,
we assume that the non-bonded interactions between the atoms in
different molecules and those between the atoms in a molecule and
the solvent molecules are pair-wise additive. Consequently, we can
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write

Uf =
N

∑
i=1

Ufi =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

N

∑
j=1
(i≠j)

(ΘS
iΘ

S
jVSS(rij) + 2ΘS

iΘ
R
j

na
∑
k=1

VSk(∣ri − r(k)j∣)

+ ΘR
i Θ

R
j

na
∑

k,k′=1
Vkk′(∣r(k)i − r(k′)j∣)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

We also assume that the non-bonded interactions between the
solvent and atoms in the reactive molecules with the ns sites on the
colloid are pair-wise additive. Then, the UI interaction potential can
be written as

UI =
N

∑
i=1
[

ns
∑
α=1

C

∑
b=N

Θb
α(Θ

S
iVSb(r

α
i ) + ΘR

i

na
∑
k=1

Vkb(r
α
(k)i))]

=
N

∑
i=1

UIi =
ns
∑
α=1

Uα
I . (8)

Here, rαi = ri − S
α
= ric − Sα(R), and rα

(k)i = r(k)i − Sα = r(k)ic −
Sα(R), where ric = ri − R and r(k)ic = r(k)i − R are the center-of-mass
and atom positions of molecule i relative to the center of mass of
the colloid. In the last line of Eq. (8), we interchanged the sums on
fluid particles and colloid sites to define Uα

I , the interaction potential
for the solvent molecules with the site α on the colloid. Interactions
of the fluid molecules with the colloidal sites are taken to be short-
ranged and are zero beyond a cut-off distance σc from the colloid
center.

A. Time evolution
The time evolution of a dynamical variable B(xNS , xNR

m ,X) is
given by the Liouville equation,

∂tB(t) = −{H,B(t)} = iLB(t), (9)

where iL, the Liouville operator for the evolution of the entire sys-
tem, is defined in terms of the Poisson bracket of the Hamiltonian
and the dynamical variable. It can be written as iL = iLc + iL0, the
sum of the Liouvillian for the colloid, iLc, and the Liouvillian for
the bath in the presence of the fixed colloid, iL0. The Liouvillian for
the colloid is

iLc =
P
M
⋅∇R −∇RUI ⋅∇P + iLrot. (10)

The rotational part of the Liouville operator Lrot can be decomposed
into an operator for the free rotation of a rigid body and an operator
for the orientationally dependent interactions,

iLrot = iLrot, f −∇θUI ⋅∇Π,

iLrot, f = ΠT
⋅M−1

⋅∇θ −∇θKrot ⋅∇Π.
(11)

The Liouville operator iLrot, f for the free rotation of a rigid body
has the property that iLrot, f L = 0, where L = Im ⋅ω = N−1

⋅Π is the
angular momentum of the colloid.37 The torque on the colloid, T, is
given by the time derivative of the angular momentum vector,

T = L̇ = −∇θUI ⋅∇Π(N−1
⋅Π) = −N−1

⋅∇θUI. (12)

The force on the colloid, Fc, is given by the time derivative of the
momentum,

Fc = Ṗ = −∇RUI. (13)

The Liouvillian for the bath in the presence of the colloid is

iL0 =
N

∑
i=1

ΘS
i (

pi
m
⋅∇ri −∇ri(Uf + UI) ⋅∇pi) +

N

∑
i=1

ΘR
i

na
∑
k=1
(
p
(k)i

mk
⋅∇r(k)i

−∇r(k)i(Um + Uf + UI) ⋅∇p
(k)i
), (14)

where Um = ∑
N
i=1 Θ

R
i Vm(rnai ).

III. CHEMICAL REACTIONS AND SPECIES DENSITIES
The motions of active colloids that operate by a self-

diffusiophoretic mechanism are powered by catalytic chemical reac-
tions on their surfaces using fuel supplied by chemical species
in their environments. The uncatalyzed reactions among reactive
molecules that take place in the fluid far from the colloid are assumed
to be controlled by high free energy barriers so that reactive events
are very infrequent and are often neglected on the time scales on
which the colloidal dynamics occurs. However, when these species
interact with the catalytic portions of the colloid, the free energy
barriers that control the reaction rates are significantly reduced,
facilitating more rapid interconversion among reactants and prod-
ucts, thus allowing the diffusiophoretic mechanism to operate. In
experiments, the catalysts can vary widely, ranging from metals to
enzymes, and the corresponding reactive fuel species vary from fre-
quently used hydrogen peroxide to the substrates specific to given
enzymes.17–21

The description of reactive dynamics from a microscopic per-
spective entails the derivation of macroscopic rate laws from the
microscopic equations of motion for chemical species densities
specified at a molecular level.40 Since the chemical species change
their identities under the dynamics, they are metastable molecu-
lar states. For condensed phase reactions, it is sufficient to use
configuration space criteria to define them, and their specifica-
tion may involve the use of one or more reaction coordinates that
depend on the reaction mechanism.41,42 While the details are sys-
tem dependent and their implementations may vary in difficulty,
the basic aspects of the formulation presented here can be gen-
eralized to accommodate a variety of reaction mechanisms, e.g.,
those involving bimolecular reactions or various surface reactions.
Here, we illustrate the application of the formalism with a sim-
ple chemical reaction, A ⇌ B, where interactions with the colloid
allow fuel A and product B species to interconvert. Such a reaction
could be used to study the diffusiophoretic dynamics of active col-
loids powered by enzymatic reactions36 where the enzymes that are
attached to the surface of the colloid are isomerases43 that catalyze
the reversible conversion from the cis (A) to trans (B) forms of the
substrate.

Specifically, the reactive molecules are assumed to exist in
two long-lived metastable states characterized by two distinct sets
of nuclear configurations corresponding to the A and B chemical
species. The metastable A and B species can be specified by intro-
ducing a scalar reaction coordinate, ξi(rnai ), that is used to define a
hypersurface ξi(rnai ) = ξ

‡ in the configuration space of the molecule
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that separates regions where the metastable chemical species lie.44

In order to describe the change in the reaction dynamics when the
reactive molecules interact with the colloid, it is useful to introduce
a second scalar reaction coordinate that is the distance of the center
of mass of the reactive molecule from an active site on the colloid,
rαi (r

na
i ) = ∣ri−S

α
∣ = ∣ric−Sα(R)∣ as defined earlier, but now, the center

of mass of a reactive molecule is given by ri = ∑na
k=1(mk/m)r(k)i. The

free energy along the vectorial reaction coordinate (ξi(rnai ), r
α
i (r

na
i ))

can be defined as W(ξ, rα) = −β−1 ln(P(ξ, rα)/Pu), with the probabil-
ity density of specified numerical values of the reaction coordinates,
(ξ, rα), given by

P(ξ, rα) = ⟨δ(ξi(rnai ) − ξ)δ(r
α
i (r

na
i )) − r

α
)⟩t , (15)

where the angle brackets denote an average over the local nonequi-
librium distribution defined below [Eq. (29)] and Pu is a uniform
probability density. The free energy W(ξ, rα) has the form shown
schematically in Fig. 2.

The species variables may be defined in terms of ξi(rnri ) as

θγi (ξi) = Θ
R
i Hγ(ξi(rnri )), (16)

where Hγ(ξi(rnri )) restricts molecular configurations to species γ ∈
{A, B}: HA(ξi(rnri )) = H(ξ‡ − ξi(rnri )) and HB(ξi(rnri )) = H(ξi(rnri )
− ξ‡), with H being a Heaviside function. The local number density
of reactive molecules at a field point r with origin at the center of the
colloid is given by

NR(r) =
N

∑
i=1

ΘR
i δ(ric − r), (17)

and it can be partitioned into the sum of the local number densities
of the A and B species at this field point, NR(r) = NA(r) + NB(r),
where

Nγ(r) =
N

∑
i=1

θγi (ξi)δ(ric − r). (18)

These densities are important quantities for the specification of the
nonequilibrium state of the system and enter the reaction–diffusion
equation for the system. The fluxes of these species densities in the
presence of a fixed colloid are given by

Ṅγ(r) = iL0Nγ(r) = JRγ (r) −∇r ⋅ jγ(r), (19)

where the local reaction rate and the number density fluxes of species
γ are

JRγ (r) =
N

∑
i=1

θ̇γi (ξi)δ(ric − r), (20)

jγ(r) =
N

∑
i=1

Θγ
im
−1piδ(ric − r). (21)

IV. NONEQUILIBRIUM STATE OF THE FLUID
In the microscopic theory of Brownian motion in an equilib-

rium system developed by Mazur and Oppenheim,32 the Langevin
equation is obtained by applying a projection operator formalism
in which the projection extracts the average of dynamical variables

FIG. 2. The upper panels of the plots W (ξ, rα) as a color-coded function of ξ and rα. It shows the potential wells corresponding to the metastable A and B species separated
by a free energy barrier. The lower panels show how W (ξ, rα) varies with ξ at two chosen values of rα: the lower right panel is for an rα value where the reactive molecule
is far from the colloid and W (ξ, rα) has a double-well structure with deep wells separated by a high barrier, while the lower left panel is for an rα value where the molecule
interacts with the colloid and the barrier separating the two metastable states is low, and the reaction is much more likely that in the bulk fluid. The numbers on the axis labels
are simply guides to illustrate the changes in the well depths and barrier heights.
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over the equilibrium bath density ρe in the presence of a fixed col-
loid. This density is stationary under the Liouville operator iL0 for a
system in which the colloid is held fixed.

However, active motion can take place only under nonequilib-
rium conditions, and the constraints that drive the system out of
equilibrium must be specified. If the system is maintained out of
equilibrium by an externally imposed reservoir, the entropy produc-
tion of the fluid is nonzero at all times, and the bath density ρb does
not equilibrate to ρe but instead evolves according to the Liouville
equation for the bath in the presence of a fixed colloid,

∂tρb(t) = −iL0ρb(t). (22)

To implement the constraints imposed by the external reser-
voirs, we use the statistical mechanical theory for transport processes
in systems out of equilibrium.33,45–51 The nonequilibrium state of the
fluid is determined by a set of conjugate fields that couple to the fol-
lowing local fluid fields: the number density Nγ(r) of the reactive
solute species defined in Eq. (18), the total number density of fluid
molecules,

N(r) =
N

∑
i=1

δ(ric − r), (23)

that is equal to the sum of solvent and solute densities, N(r) = NS(r)
+ NA(r) + NB(r), where the solvent density is

NS(r) =
N

∑
i=1

ΘS
i δ(ric − r), (24)

the total momentum density of the centers of mass of the solvent and
solute molecules,

gN(r) =
N

∑
i=1

piδ(ric − r), (25)

and the energy density of the fluid particles in the presence of the
colloid,

EN(r) =
N

∑
i=1
[ΘS

i
p2
i

2m
+ ΘR

i Hmi + Ufi + UIi]δ(ric − r). (26)

We further assume that the system is isothermal with tempera-
ture T although the formulation can be generalized to accommodate
temperature variations. Note that the constraints are applied to the
species densities Nγ(r) and total number and momentum densities.
They are not applied to the total reactive molecule density NR(r)
since we are primarily interested in situations where the species den-
sities are maintained out of equilibrium. We then consider the set of
fluid fields,

A(r) = {Nγ(r),N(r), gN(r),EN(r)}, (27)

and corresponding conjugate fields,

ϕA(r, t) = {βμ̃γ(r, t),β(μS(r, t)−
1
2
mv2
(r, t)),βv(r, t),−β}, (28)

where β = 1/(kBT), with kB being Boltzmann’s constant. The local
relative chemical potential of species γ is μ̃γ(r, t) = μγ(r, t)−μS(r, t),
while v(r, t) is the local fluid velocity field. The approach can be
generalized to include mode coupling contributions by expanding

the set of variables to include all nonlinear products of the slowly
varying fields.52,53

The local nonequilibrium distribution function may be
written as

ρL(t) =
∏λ(Nλ!h3Nλ)

−1eA(r)∗ϕA(r,t)

Tr[∏λ(Nλ!h3Nλ)−1eA(r)∗ϕA(r,t)]
, (29)

where ∗ denotes a scalar product and an integration over r, i.e., A(r)
∗ ϕA(r, t) = ∫drA(r) ⋅ϕA(r, t), and λ ∈ {S, A, B}. The trace opera-
tion includes an integration over phase space and a sum over particle
numbers and types,

Tr[⋯] =∏
λ

∞

∑
Nλ=0
∫ dxNSdxNR

m ⋯. (30)

The values of the conjugate fields ϕA(r, t) are chosen such that
the local nonequilibrium averages of the A(r) variables in the pres-
ence of the colloid are given by their exact nonequilibrium averages
in the presence of a fixed colloid,

a(r, t) ≡ Tr[ρb(t)A(r)] = Tr[ρL(t)A(r)] ≡ ⟨A(r)⟩t . (31)

Both ρb(t) and ρL(t) depend parametrically on the fixed position
R and orientation θ of the colloidal particle, explicitly through the
interaction potential in the Hamiltonian and through the thermody-
namic conjugate fields ϕA(r, t).

The local equilibrium distribution function ρL(t) can be gener-
alized to incorporate additional higher order conjugate fields that
couple to nonlinear products of the hydrodynamic densities. The
additional conjugate fields are important when considering the
dynamics of multilinear densities in nonequilibrium systems where
the densities can exhibit long range correlations. However, for linear
densities of hydrodynamic fluid fields, the additional conjugate fields
provide only small mode coupling corrections that can be neglected
to a good approximation.54

To study the self-diffusiophoretic motion of the colloid, the
solute chemical potentials can be given specified values far from
the particle to describe a nonequilibrium scenario in which fuel
and product species are fed in or removed from the system using
external reservoirs. In this circumstance, the fluid velocity field van-
ishes far from the colloid, and there are no net fluid flows, although
fluid flows are produced in the vicinity of the colloid as part of the
diffusiophoretic mechanism.

V. DERIVATION OF GENERALIZED LANGEVIN
EQUATION

Preparatory to obtaining the equations of motion for the lin-
ear and angular momenta of the colloid, we first consider how
the Langevin equation for a general function D(X) of the colloidal
degrees of freedom may be obtained. The variable D(X, t) satisfies
the equation of motion,

d
dt
D(t) = iLD(t) = eiLtiLD(0). (32)

The generalized Langevin equation is obtained from Eq. (32) by
projecting out the bath degrees of freedom so that their effects are
incorporated into frictional and random forces. In order to project
out the dependence on the bath variables, we make use of the
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time-dependent projector P(t) defined by its action on an arbitrary
function f,33,47

P(t)f = Tr[ρb(t)f ], (33)

and its complement, Q(t) = 1 − P(t). The adjoint of the pro-
jector P(t) is P†

(t), defined by P†
(t)f = ρb(t)Tr[f ]. Follow-

ing usual methods, the generalized Langevin equation is obtained
by rewriting the propagator U(0, t) = exp (iLt) in an equiva-
lent form involving the time-ordered projected propagator UQ(0, t)
= T− exp (∫t0dt1 iLQ(t1)), where T− is a time ordering operator that
orders operators in an increasing order of their time argument. As
shown in Appendix A, the evolution operators U(0, t) and UQ(0, t)
are related by

U(0, t) = U(0, t)P(t) + Q(0)UQ(0, t)

−∫

t

0
dt1 U(0, t1)(∂t1P(t1))UQ(t1, t)

+∫
t

0
dt1 U(0, t1)P(t1)iLQ(t1)UQ(t1, t). (34)

Inserting this expression for U(0, t) = exp (iLt) into the
equation of motion (32), we obtain

d
dt
D(t) = eiLtP(t)Ḋ + FD

fl (t) − ∫
t

0
dt1 eiLt1(∂t1P(t1))KD(t1, t)

+∫
t

0
dt1 eiLt1P(t1)iLKD(t1, t), (35)

where we have defined Ḋ = iLD and

KD(t1, t2) = Q(t1)UQ(t1, t2)Ḋ

= Q(t1)UQ(t1, t2)Q(t2)Ḋ (36)

and made use of the relation P(t1) + Q(t1) = 1 in writing the third
term on the right-hand side of Eq. (35). The fluctuating force is given
by FD

fl (t) = KD(0, t).
The integral terms in Eq. (35) can be evaluated as shown

in Appendix B, and using these results, the generalized Langevin
equation for D(t) reads

d
dt
D(t) = Tr[ρb(t)Ḋ](X(t)) + FD

fl (t) + ∫
t

0
dt1 (−

P(t1)
M
⋅M1(t1, t)

+∇P(t1) ⋅M2(t1, t) −Π(t1)T ⋅M(t1)−1
⋅M3(t1, t)

−∇Π(t1) ⋅M4(t1, t)), (37)

where we defined

M1(t1, t;X) = Tr[(∇Rρb(t1))KD(t1, t)], (38)

M2(t1, t;X) = Tr[ρb(t1)FcKD(t1, t)], (39)

M3(t1, t;X) = Tr[(∇θρb(t1))KD(t1, t)], (40)

M4(t1, t;X) = Tr[ρb(t1))∇θUIKD(t1, t)] (41)

but have not indicated the dependence of these quantities on X(t1)
in Eq. (37). The matrix M(t1) in Eq. (37) corresponds to the mass-
weighted kinetic matrix M defined by Eq. (5) evaluated at the fixed
colloid position and orientation at time t1.

A. Approximate form of Langevin equation:
Brownian motion scaling

Following the theory of Brownian motion,32 when M≫m, it is
useful to introduce scaled momenta, P∗ = μP and Π∗ = μΠ, where
μ = (m/M)1/2 is a small parameter that gauges the magnitude of the
colloidal momenta. The corresponding scaled colloidal Liouvillian
is iLc = μiL∗c . The above results, along with the action of exp(iLt),
allow us to write the generalized Langevin equation for the colloid in
scaled colloidal coordinates as

dD∗(t)
dt

= μTr[ρb(t)Ḋ](X(t)) + μFD
fl (t) + μ2

∫

t

0
dt1

×(−
P∗(t1)
m

⋅M1(t1, t) +∇P∗(t1) ⋅M2(t1, t)

−Π∗(t1) ⋅M(t1)−1
⋅M3(t1, t)

−∇Π∗(t1) ⋅M4(t1, t)). (42)

Again, we have not indicated the dependence of the matrices of
transport coefficients Mi on X for simplicity.

The relation between the exact and local nonequilibrium distri-
butions, ρb(t) and ρL(t), respectively, is given in Eq. (C22). The fields
μλ(r, t) and v(r, t) in this equation are assumed to be slowly vary-
ing in space, so we may associate a small parameter ϵh that gauges
the size of the gradients of these fields. In addition, we assume that
the reactions are rare events and associate another small param-
eter ϵr that gauges the magnitude of the reactive flux. Equation
(C22) also contains a term QA(t1)Ff(r) ∗ v(r, t1). The QA projec-
tor removes the contributions to Ff(r) that are proportional to the
species and total number densities, leaving only contributions to the
force that arise from internal molecular degrees of freedom. Neglect-
ing such contributions, we have ρb(t) = ρL(t) + O(ϵh,r), and we
can replace ρb(t) by ρL(t) in evaluating the Mi functions. However,
since Tr[ρb(t)Ḋ] scales as μ, this replacement cannot be made in
this term.

Since∇RρL(t) = β(Fc − ⟨Fc⟩t)ρL(t) and∇θρL(t) = −β(∇θUI −

⟨∇θUI⟩t)ρL(t), in this approximation, we have

M1(t1, t) = Tr[(∇RρL(t1))KD(t1, t)]
= βTr[ρL(t1))FcKD(t1, t)]
= βM2(t1, t), (43)

M3(t1, t) = Tr[(∇θρL(t1))KD(t1, t)]
= −βTr[ρL(t1))∇θUIKD(t1, t)]
= −βM4(t1, t). (44)

Noting that∇θUI = −N ⋅T and ΠT
⋅M−1

∇θUI = −L ⋅Im−1
⋅T, the last

two terms of Eq. (42) can be written in terms of the scaled angular
momentum L∗ as

−Π∗(t1) ⋅M(t1)−1
⋅M3(t1, t) −∇Π∗(t1) ⋅M4(t1, t)

= (−βL∗(t1) ⋅ Im(t1)−1 +∇L∗(t1)) ⋅MTḊ(t1, t), (45)

where MTḊ(t1, t) = Tr[ρL(t1)TKD(t1, t)]. We also let MFḊ(t1, t)
= M2(t1, t).
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Using the equations given above, we can write MFD and MTD
more explicitly in the form of friction kernels,

MFḊ(t1, t) = ⟨(Fc − ⟨Fc⟩t)Q(t1)UQ(t1, t)(Ḋ − ⟨Ḋ⟩t)⟩t1 ,

MTḊ(t1, t) = ⟨(T − ⟨T⟩t)Q(t1)UQ(t1, t)(Ḋ − ⟨Ḋ⟩t)⟩t1 ,
(46)

where UQ(t1, t) is now taken to be the projected evolution opera-
tor with ρb replaced by ρL and iL by iL0 neglecting higher order μ
contributions.

VI. LANGEVIN EQUATIONS FOR LINEAR
AND ANGULAR MOMENTA

Taking the dynamical variables D = P and D = L, noting the
fact that UQ(t1, t) ≈ eiL0(t−t1)(1 + O(μ) + O(ϵh,r)) and retaining
only the lowest order terms of the small parameters μ, ϵh, and
ϵr in Eq. (46), we obtain the coupled Langevin equations for the
translational and rotational motion of the colloid in the unscaled
coordinates,

d
dt
P(t) = Tr[ρb(t)Fc](R(t), θ(t)) + Ffl(t)

−∫

t

0
dt1 β

P(t1)
M
⋅MFF(t1, t)

−∫

t

0
dt1 βL(t1) ⋅ Im(t1)−1

⋅MTF(t1, t) (47)

and

d
dt
L(t) = Tr[ρb(t)T](R(t), θ(t)) + Tfl(t)

−∫

t

0
dt1 β

P(t1)
M
⋅MFT(t1, t)

−∫

t

0
dt1 βL(t1) ⋅ Im(t1)−1

⋅MTT(t1, t), (48)

where we used the notation FP
fl = Ffl and FL

fl = Tfl for the random
force and torque. The generalized Langevin equation for the lin-
ear momentum takes the form of an ordinary Langevin equation by
changing variables t′ = t − t1, taking P(t − t′) ≈ P(t) on the fast time
scale of the force correlation decay, and defining the friction tensor
by

ζ t = β∫
∞

0
dt′ MFF(0, t′)

= β∫
∞

0
dt′ ⟨(Fc − ⟨Fc⟩t)eiL0t′(Fc − ⟨Fc⟩t)⟩t . (49)

In a similar approximation, the rotational friction tensor ζr can be
defined as

ζr = β∫
∞

0
dt′ MTT(0, t′)

= β∫
∞

0
dt′ ⟨(T − ⟨T⟩t)eiL0t′(T − ⟨T⟩t)⟩t , (50)

with analogous expressions for the cross coupling friction tensors ζ tr
and ζrt that couple translational and rotational motion.

Setting P = MV , when the translational and rotational motions
decouple, the Langevin equations take the final form55

M
d
dt
V(t) = Tr[ρb(t)Fc](R(t), θ(t)) − ζtV(t) + Ffl(t), (51)

dL(t)
dt
= Tr[ρb(t)T](R(t), θ(t)) − ζrL(t) ⋅ Im(t)

−1

+Tfl(t), (52)

where we used ζ t = ζ t1 and ζr = ζr1. For a spherical rotor, Im(t)
= I1U is diagonal and independent of time. In this case, the angular
momentum is L(t) = I1ω(t), and an equation of the Langevin form
can be written for the angular velocity ω(t).

VII. DIFFUSIOPHORETIC FORCE AND TORQUE
The mean force and torque in the Langevin equations,

Tr[ρb(t)Fc](R(t), θ(t)) and Tr[ρb(t)T](R(t), θ(t)), respectively, are
responsible for the active translational and rotational motions of the
colloid. In the absence of constraints that drive the system out of
equilibrium, both of these quantities vanish, and Langevin equations
reduce the standard forms that describe the Brownian dynamics of
inactive colloids.

The constraints described by the ϕA(r, t) fields can be applied
in various ways to specify the nonequilibrium state. For a self-
diffusiophoretic colloid, a simple constraint is the specification of
the values of chemical potentials of the A and B species far from
the colloid. To study more general aspects of diffusiophoretic col-
loidal motion, the gradients of these chemical potentials could also
be specified. Under such constraints, the fluid velocity fields vanish
far from the colloid, although, as noted earlier, the active motion
of the colloid will generate local variations of the concentration and
velocity fields in the vicinity of the colloid as part of the diffusio-
phoretic mechanism. In this section, we consider the forms that the
diffusiophoretic force and torque take under such constraints.

A. Force
Using momentum conservation, the force on the colloid can be

written in terms of the local force on the fluid, Fc = −∫dr Ff(r), given
in Eq. (C21), as

Fc =
ns
∑
α=1
[∫ dr

N

∑
i=1

C

∑
b=N

Θb
α(Θ

S
i∇riVSb(r

α
i )

+ΘR
i

na
∑
k=1
∇r(k)iVkb(r

α
(k)i))δ(ric − r)] ≡

ns
∑
α=1

Fα
c , (53)

and Fα
c can be written in terms of the local solvent and rna -dependent

reactive molecule densities as

Fα
c = ∫ dr

C

∑
b=N

Θb
α(∇rVSb(r

α
))NS(r) + ∫ dr ∫ drna

C

∑
b=N

Θb
α

× [

na
∑
k=1
∇r(k)Vkb(r

α
(k))]NR(r, rna). (54)

The local rna -dependent reactive molecule density is defined by

NR(r, rna) =
N

∑
i=1

ΘR
i δ(ric − r)δ(r

na
i − r

na). (55)
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The expression for the force on the colloid in Eq. (54) involves
NR(r, rna) and not the A and B species densities that enter the con-
straint conditions in Eq. (31). We can rewrite it in terms of Nγ(r)
using projectors that project NR(r, rna) onto the species densities.
We let p(rna ∣r) be the conditional probability density of the molec-
ular coordinates rna , given a distance r of the center of mass of the
molecule from the colloid center, and define a projector Ps and its
complement Qs = 1 − Ps by

Psf (rna) =∑
γ
pγ(rna ∣r)∫ drna Hγ(ξ(rna))f (rna)

≡∑
γ

Pγ
s f (r

na), (56)

where

pγ(rna ∣r) =
Hγ(ξ(rna))p(rna ∣r)

∫ drna Hγ(ξ(rna))p(rna ∣r)
(57)

is the conditional probability density with the internal molecular
coordinates restricted to those for species γ. The action of this
projector on NR(r, rna) is

PsNR(r, rna) =∑
γ
pγ(rna ∣r)Nγ(r). (58)

Inserting NR(r, rna) = PsNR(r, rna) + QsNR(r, rna) into Eq. (54), we
get

Fα
c =∑

λ
∫ dr Nλ(r)

C

∑
b=N

Fα
λb(r) + ΔFα

c , (59)

where Fα
Sb = Θ

b
α∇rVSb(rα),

Fα
γb(r) = Θ

b
α ∫ drna [

na
∑
k=1
∇r(k)Vkb(r

α
(k))]pγ(r

na ∣r), (60)

ΔFα
c =

C

∑
b=N

Θb
α ∫ dr drna[

na
∑
k=1
∇r(k)Vkb(r

α
(k))]QsNR(r, rna). (61)

Using ⟨N(r)⟩t = ∑λ⟨Nλ(r)⟩t and the notation introduced
in Eq. (31) where ⟨N(r)⟩t = n(r, t) and ⟨Nγ(r)⟩t = nγ(r, t), the
diffusiophoretic force may now be written as

Tr[ρb(t)Fc](R(t), θ(t))

= ∫ dr
⎡
⎢
⎢
⎢
⎢
⎣

∑
γ
(

C

∑
b=N
(Fγb(r) − FSb(r)))nγ(r, t)

+
C

∑
b=N

FSb(r)n(r, t)] + Tr[ρb(t)ΔFc]. (62)

B. Torque
A similar calculation can be carried out for the torque starting

from the expression

T = −N−1
⋅ ∇θ

ns
∑
α=1

Uα
I

= −

ns
∑
α=1

N−1
⋅ ∇θU

α
I =

ns
∑
α=1

Tα, (63)

where Tα is the contribution to the total torque from interaction
site α on the colloid. Noting that the θ-dependence of the inter-
action potential arises from the relative position Sα(R) = Sα − R
= AT

(θ) ⋅ S̃α of the interaction site from the center of the colloid, we
have

Tα
= −N−1

⋅
C

∑
b=N

Θb
α

N

∑
i=1
[ΘS

i∇θr
α
i ⋅∇rα

i
Vsb(r

α
i )

+ΘR
i

na
∑
k=1
∇θr

α
(k)i ⋅∇rα

(k)i
Vkb(r

α
(k)i)]

= N−1
⋅

C

∑
b=N

Θb
α

N

∑
i=1
[ΘS

i∇θS
α
(R) ⋅∇rα

i
Vsb(r

α
i )

+ΘR
i

na
∑
k=1
∇θS

α
(R) ⋅∇rα

(k)i
Vkb(r

α
(k)i)]. (64)

From the definition of the N matrix in Eq. (4) with the use of the
identity ϵijbϵcdb = δicδjd − δidδjc, we find that

ϵijbNab =
1
2
(Aei∇θaAej − Aej∇θaAei)

= Aei∇θaAej (65)

since∇θaA
T
⋅ A = 0.

Considering

(N−1
)ab∇θbS

α
c (R) = (N

−1
)ab∇θbAdcS̃

α
d

= −(N−1
)abAdc (∇θbAde) S

α
e (R)

and taking the relation above into account, we get

(N−1
)ab∇θbS

α
c (R) = −(N

−1
)ab ϵ

fceNbf S
α
e (R)

= −ϵaceSαe (R).

Using this relation in Eq. (64), we find the simple result

Tα
= Sα(R) ∧ [

N

∑
i=1

C

∑
b=N

Θb
αθ

S
i∇rαicVsb(r

α
ic) + θRi

na
∑
k=1
∇rk(α)ic

Vkb(r
k(α)
ic )]

= Sα(R) ∧ Fα
c . (66)

The average of the diffusiophoretic torque then adopts a form that is
analogous to that for the diffusiophoretic force,

Tr[ρb(t)T](R(t), θ(t))

=

ns
∑
α=1

Sα(t) ∧ ∫ dr
⎡
⎢
⎢
⎢
⎢
⎣

∑
γ
nγ(r, t)

C

∑
b=N
(Fα

γb(r) − F
α
Sb(r))

+n(r, t)
C

∑
b=N

Fα
Sb(r)] +

ns
∑
α=1

Sα(t) ∧ Tr[ρb(t)ΔF
α
c ]

=

ns
∑
α=1

Sα(t) ∧ Tr[ρb(t)F
α
c ](R(t), θ(t)), (67)

where Sα(t) = Sα(R(t), θ(t)) are the positions of the sites α relative
to the center of the colloid at time t.

C. Contributions to force and torque
The diffusiophoretic force and torque in Eqs. (62) and (67) have

several contributions. The first two contributions involve the local
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equilibrium averages of the species and total density fields whose
values are fixed by the constraints to give the exact nonequilib-
rium values of these quantities. These average fields may be deter-
mined from the solutions of the generalized hydrodynamic equa-
tions they satisfy. The last terms still retain the averages over the
exact nonequilibrium density.

The terms involving Tr[ρb(t)ΔFc] are expected to be small.
While the introduction of the species densities Nγ(r) accounts
for nonequilibrium effects through the reaction, the projected
microscopic reactive molecule density QsNR(r, rna) that enters
Tr[ρb(t)ΔFc] accounts for a nonequilibrium effect in the internal
molecular degrees of freedom induced by the reaction. While such
nonequilibrium effects can be taken into account, they are not a
dominant effect and are expected to be small in most situations.

With these approximations Tr[ρb(t)Fc] ≈ ⟨Fc⟩t and Tr[ρb(t)T]
≈ ⟨T⟩t , the diffusiophoretic force and torque are given by

⟨Fc⟩t = ∫ dr [
C

∑
b=N

FSb(r)n(r, t)

+∑
γ
(

C

∑
b=N
(Fγb(r) − FSb(r)))nγ(r, t)

⎤
⎥
⎥
⎥
⎥
⎦

, (68)

⟨T⟩t =
ns
∑
α=1

Sα(t) ∧ ∫ dr[n(r, t)
C

∑
b=N

Fα
Sb(r)

+ ∑
γ
nγ(r, t)

C

∑
b=N
(Fα

γb(r) − F
α
Sb(r))

⎤
⎥
⎥
⎥
⎥
⎦

=

ns
∑
α=1

Sα(t) ∧ ⟨Fα
c ⟩t(R(t), θ(t)), (69)

and their evaluation requires a knowledge of the local nonequi-
librium averages of the hydrodynamic fields, which we consider
below.

D. Reaction–diffusion equations for species densities
The generalized hydrodynamic equations for the nonequilib-

rium averages a(r, t) of slowly varying densities A(r) of microscopic
variables can be derived by noting that

∂ta(r, t) = Tr[∂tρb(t)A(r)] = −Tr[(iL0ρb(t))A(r)]

= Tr[ρb(t)iL0A((r))] = Tr[ρb(t)Ȧ(r)]. (70)

Using the relation between ρb(t) and the local equilibrium den-
sity ρL(t) established in Appendix C, the hydrodynamic equations
assume the form

∂ta(r, t) = ⟨Ȧ(r)⟩t + fA,t(r, t)

− ∫

t

0
dt1 ⟨FA,t(r, t1, t)FA,t1(r

′
)⟩t1 ∗ ϕA(r

′, t1),

(71)

with

FA,t(r, t1, t) = UQA(t1, t)QA(t)iL0A(r)
= UQA(t1, t)FA,t(r), (72)

where

UQA(t1, t) = T− exp{∫
t

t1
dt2 QA(t2)iL0},

which follows by taking the Hermitian conjugate of Eq. (C13), and
the random force is given by fA,t(r, t) = Tr[ρb(0)FA,t(r, 0, t)]. From
the general expression (71), a set of coupled equations for local
nonequilibrium species densities and total number and momentum
densities can be written that depend on their corresponding conju-
gate fields. The solutions of these equations can then be inserted into
the expressions for the diffusiophoretic force and torque to complete
the calculation of these quantities.

To illustrate how to carry out this program, consider the equa-
tion of motion for the average species number density fields nγ(r, t).
For simplicity, we suppose that the Péclet number is small,
Pe = VsdRc/Dγ ≪ 1, so that advective effects can be neglected. Here,
Rc is the colloid radius, andDγ is the diffusion coefficient of species γ.
When advective effects are small, the evolution of the number den-
sities is independent of the fluid flow field. In this case, the evolution
equation reads

∂tnγ(r, t) = fγ,t(r, t)

− ∫

t

0
dt1 ⟨Fγ,t(r, t1, t)Fγ′ ,t1(r

′
)⟩t1 ∗ μ̃γ′(r

′, t1), (73)

where we have used the summation convention and

Fγ,t(r, t1, t) = UQA(t1, t)QA(t)iL0Nγ(r)
= UQA(t1, t)Fγ,t(r), (74)

with the random force given by fγ,t(r, t) = Tr[ρb(0)Fγ,t(r, 0, t)]. The
random force vanishes if the initial condition is the local equilibrium
distribution and will be neglected here.

The Fγ,t(r, t1, t) functions evolve on a short time scale τm in
view of the projected dynamics. Consequently, the time-ordered
evolution operator UQA(t1, t) can be simplified by replacing the pro-
jectors QA(tn) by QA(t) so that UQA(t1, t) ≈ eQA(t)iL0(t−t1). Using
this approximation and making the substitution t1 = t − τ in the
integral, we have

∫

t

0
dt1 ⟨Fγ,t(r, t1, t)Fγ′ ,t1(r

′
)⟩t1
∗ μ̃γ′(r′, t1)

≈ [∫

∞

0
dτ ⟨(eQA(t)iL0τFγ,t(r))Fγ′ ,t(r′)⟩

t
] ∗ μ̃γ′(r′, t), (75)

where in the last line, we replaced the upper limit t in the integral by
infinity for t≫ τm and replaced μ̃γ(r′, t − τ) by μ̃γ(r′, t).

Using Eqs. (19) and (20) to obtain Fγ,t(r) = JRγ (r) −∇r ⋅ jγ(r),
along with Eq. (75), and neglecting cross coupling between reaction
and diffusion, the generalized reaction–diffusion equation (73) can
be written as

∂tnγ(r, t) = −LRγγ′(r, r′) ∗ βμ̃γ′(r′, t)

+∇r ⋅ Lγγ′(r, r′) ∗ β∇r′ μ̃γ′(r′, t), (76)

where the reaction and diffusion transport terms are

LRγγ′(r, r′) = ∫
∞

0
dτ ⟨JRγ (r, τ∗)JRγ′(r

′
)⟩t , (77)

Lγγ′(r, r′) = ∫
∞

0
dτ ⟨jγ(r, τ∗)jγ′(r

′
)⟩

t
, (78)
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and τ∗ is used to denote evolution by projected dynamics. Since the
chemical species are dilute in the solvent, the constraint condition
[Eq. (70)] relating the nonequilibrium species densities nγ(r, t) at
time t to the conjugate fields ϕ(r, t) can be inverted to the leading
order in the fugacities of the dilute species. As a result, the chemi-
cal potentials can be written as μγ(r, t) = μ0

γ + kBT ln(nγ(r, t)/n0),
and substitutions into Eq. (76) yield closed equations for these local
species density fields in the presence of the fixed colloid. For our
self-diffusiophoretic colloid, these equations should be solved sub-
ject to constraints on the concentration fields at the boundaries
where the system is in contact with reservoirs with fixed chem-
ical concentrations. Although the solution of the fluid equations
depends on where the colloid is located relative to the reservoirs,
the behavior of the fluid densities in the vicinity of the colloid is
determined by the local microscopic interactions of the fluid par-
ticles. An analogous treatment can be applied to the equations for
the total number and momentum density fields. These transport
equations, along with the expressions given above for the diffu-
siophoretic force and torque and colloid friction, provide a fully
microscopic Langevin description of active self-diffusiophoretic
dynamics.

VIII. RELATION TO CONTINUUM THEORIES
For large colloidal particles, it is appropriate to use the equa-

tions of continuum fluid mechanics to describe the dynamics of the
fluid and to account for interactions of the fluid fields with the col-
loid through boundary conditions.9,10,56 Such descriptions are widely
used for active colloidal particles with micrometer dimensions but
will break down when the colloid size is no longer large compared to
that of the fluid species, roughly in the lower portion of the nanome-
ter range. In the low Reynolds number regime where inertia is unim-
portant, the computation of the velocity of an active colloidal particle
propelled by a self-diffusiophoretic mechanism proceeds by solving
the Stokes equation for the fluid velocity field and reaction–diffusion
equation for the solute species subject to boundary conditions on the
colloid surface.

As an example, consider a spherical Janus colloid with radius R
and orientation vector û pointing from the noncatalytic N to cat-
alytic C hemispheres. The reaction A ⇌ B occurs on its catalytic
face, and the diffusion coefficients of these solute species are equal.
Assuming perfect stick boundary conditions for the velocity field on
the colloid yields the following equation for the self-diffusiophoretic
velocity:22,23,57

Vsd =
kBT
η ∑γ

Λγ(1 − n̂n̂) ⋅∇n+
γ(r)

S

=
kBT
η

Λ(1 − n̂n̂) ⋅∇n+
B(r)

S
, (79)

with Λγ = ∫
R+δ
R dr (r − R)(e−βVγc(r) − 1), where Vγc is the solute–

colloid interaction potential, η is the shear viscosity, and n̂ is the
unit normal to the surface. The surface average is defined as f

S

= (4πR2
)
−1
∫drδ(r − R)f . For simplicity, we have assumed that the

γ = A, B species particles interact with the both faces of the Janus
particle with the same potential although this assumption need not
be made. The + superscript on the species density indicates that it is

for the fluid phase outside the interaction zone where δ is the range
of the solute–colloid potentials. The second equality in Eq. (79) used
nA + nB = n0 where the total density of both species is constant and
defined as Λ = ΛB − ΛA.

The result (79) is obtained by using the Navier–Stokes equa-
tions for the fluid velocity and the aforementioned reaction–
diffusion equations, but the key features of this result can already be
identified in the different contributions to the diffusiophoretic force
in Eq. (68). As in the continuum calculation, we may assume that the
solute and solvent species are structureless and that the interactions
do not depend on the C or N labels of the surface sites. With these
approximations, the contributions of the solute species γ to Eq. (68)
can be evaluated as follows:

∫ dr ∑
γ
Fγc(r)nγ(r) = −kBT ∫ dr ∑

γ
(∇e−βVγc(r))n+

γ(R, θ)

= 4πkBTΛ∫
1

−1
dμ μ n+

B(R, θ)û

= 4πRkBTΛ(1 − n̂n̂) ⋅∇n+
B(r)

S
, (80)

where we have used the fact that Fγc(r) = ∇rVγc(r) for this sim-
plified model and nA + nB = n0 to write the third equality. Since
the fluid–colloid intermolecular forces vanish outside the interaction
zone, the integration is restricted to R < r ≤ R + δ. An approxi-
mate computation leading to the intermediate steps in Eq. (80) can
be obtained by taking the density field in the interaction region as
nγ(r) = e−βVγc(r)n+

γ(R, θ). Furthermore, we have taken û to be the
polar axis for the integration, and μ = cos θ. The last equality follows
from the use of the identity

(1 − n̂n̂) ⋅∇n+
B(r)

S
=
û
R ∫

1

−1
dμ μ n+

B(R, θ). (81)

In the overdamped regime, the diffusiophoretic velocity is related
to the diffusiophoretic force by Vsd = ζ−1

t ⟨Fc⟩t . Taking the transla-
tional friction coefficient for stick boundary conditions, ζ t = 6πηR,
we obtain an expression comparable to the known result (79) in the
continuum limit.

To go beyond this simplified model, the complete calcula-
tion would require the use of the Navier–Stokes equations, which
can also be deduced in the present formalism, as discussed in
Sec. VII D, and which is coupled to the Langevin equations for the
colloidal particle. The behavior of the fluid densities in the vicinity of
the colloid is determined by the local microscopic interactions of the
fluid particles with the colloid. These fluid densities typically exhibit
rapid variations and structural and dynamic correlations near the
colloid due to strong interactions of solvent particles at short dis-
tances from interaction sites on the colloid. The determination of
the appropriate boundary conditions that account for the compli-
cated surface structure and dynamics in the fluid induced by the
colloidal interactions requires a detailed analysis of the generalized
reaction–diffusion and hydrodynamic equations in the interaction
zone around the colloid. Through such analyses, a quantitative link
between the present microscopic description and continuum treat-
ments of self-diffusiophoresis for large colloidal particles can be
made.
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IX. CONCLUSION

The molecular-level derivation of the Langevin equations given
in Eqs. (47) and (48) for an active particle whose propulsion arises
from a diffusiophoretic mechanism allows one to assess the domain
of validity of Langevin descriptions of such active systems that
are often proposed on phenomenological grounds. The generalized
Langevin equations incorporate features that become important on
small length and time scales. These include the static structural cor-
relations among fluid species and the active particle that complicate
descriptions in which the effect of the colloid on the fluid is incor-
porated into boundary conditions, explicit treatment of both the sol-
vent and solute species and their interactions with the active particle,
and memory effects that enter because the time scales of the dynam-
ics are not as well separated as when the active particle is orders
of magnitude larger than the solvent species. They also provide a
molecular basis for the active colloid Langevin equations obtained
through treatments based on fluctuating chemohydrodynamics.22,23

The diffusiophoretic force and torque in the Langevin equa-
tions are important quantities that differentiate these Langevin equa-
tions from those for ordinary Brownian motion. They contain con-
tributions that depend on the local nonequilibrium averages of
species density fields expected from continuum calculations; how-
ever, these fields themselves satisfy generalized hydrodynamic and
reaction–diffusion equations, as seen in Eqs. (71) and (76). In addi-
tion, they have contributions that involve full nonequilibrium aver-
ages of the reactive molecules that cannot be expressed separately in
terms of the fuel and product species densities.

Another important feature that emerges from the microscopic
derivation is that all transport and dynamical diffusiophoretic fac-
tors have microscopic expressions in terms of Green–Kubo correla-
tion functions. This permits one, at least in principle, to determine
these quantities directly from molecular dynamics simulations. The
translational and rotational friction tensors in Eqs. (49) and (50),
respectively, can be computed by numerically evaluating autocor-
relation functions of the force and torque imparted on the fixed
colloid by the fluid under nonequilibrium conditions. Similarly, the
transport coefficients in Eqs. (77) and (78) that enter the reaction–
diffusion equation (76) in the presence of the colloid are amenable to
evaluation by simulation. In particular, since the reactive species are
treated at a molecular level that explicitly accounts for the dynamics
of the nuclei comprising the molecules, the activated rate processes
that take place on the colloid (or in the fluid) can be described in
terms of suitable reaction coordinates whose specific forms depend
on the reaction mechanism, and reaction rates can be computed
using molecular dynamics employing rare event sampling methods
for these slow processes.58 Thus, all transport properties are specified
in molecular terms through correlation functions whose infinite-
time integrals are well-defined since the dynamics involves a fixed
colloidal particle32 or projected time evolution.

It is simple to extend the formalism presented here to describe
thermophoretically active colloids in the presence of an external
temperature gradient or to incorporate reactive events that are not
iso-enthalpic. In addition, while most of the presentation in this
paper considered a rigid colloid, the development is not restricted
to this specific kind of active particle. The active particle may be
any molecule or molecular aggregate with internal degrees of free-
dom so that the generalized Langevin equations presented can form

a basis for the analysis of molecular simulations and experiments
dealing with reactive dynamics in the presence of nonequilibrium
constraints on molecular scales.
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APPENDIX A: EVOLUTION OPERATOR
The full system evolution operator satisfies the following

equation:

∂tU(0, t) = U(0, t)iL, (A1)

while the time-ordered projected evolution operator UQ(0, t)
satisfies

∂tUQ(0, t) = UQ(0, t)iLQ(t), (A2)

whose formal solution can be written as

UQ(0, t) = T− exp(∫
t

0
dt1 iLQ(t1)), (A3)

where T− is a time ordering operator that orders operators in an
increasing order by their time argument.

The relation between these propagators can be established as
follows: The evolution operators U(0, t) and UQ(0, t) have the prop-
erty U(t1, t2)U(t2, t3) = U(t1, t3), with an analogous expression for
UQ(t1, t2). To establish the relation between these operators, we let
U(0, t) = G(t)UQ(0, t) so that the operator G(t) = U(0, t)U−1

Q (0, t).
Its initial value is G(0) = 1. Since UQ(0, t)U−1

Q (0, t) = 1 by definition,
U−1

Q (0, t) satisfies

∂tU−1
Q (0, t) = −iLQ(t)U−1

Q (0, t). (A4)

Differentiation of the definition of G(t) yields

∂tG(t) = U(0, t)iLU−1
Q (0, t) + U(0, t)∂tU−1

Q (t, 0)

= U(0, t)iLP(t)U−1
Q (0, t), (A5)

which, after integration, gives

G(t) = 1 + ∫
t

0
dt1 U(0, t1)iLP(t1)U−1

Q (0, t1)

= 1 + ∫
t

0
dt1 (∂t1U(0, t1))P(t1)U−1

Q (0, t1). (A6)

Using this result, we may then obtain U(0, t) as

U(0, t) = UQ(0, t) + ∫
t

0
dt1 (∂t1U(0, t1))P(t1)UQ(t1, t)

= UQ(0, t) + ∫
t

0
dt1 ∂t1(U(0, t1)P(t1)UQ(t1, t))

−∫

t

0
dt1 U(0, t1)∂t1(P(t1)UQ(t1, t)), (A7)

which can be rearranged to give Eq. (34) in the main text.
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APPENDIX B: REDUCTION OF INTEGRAL TERMS
IN EQ. (35)

Let I denote the integral terms in Eq. (35),

I = ∫
t

0
dt1 eiLt1[P(t1)iLKD(t1, t) − (∂t1P(t1))KD(t1, t)]. (B1)

We have

−(∂t1P(t1))KD(t1, t) = Tr[(iL0ρb(t1))KD(t1, t)]
= −Tr[ρb(t1)iL0KD(t1, t)]
= −P(t1)iL0KD(t1, t). (B2)

Using this result, along with iL − iL0 = iLc, Eq. (B1) can be written
as

I = ∫
t

0
dt1 eiLt1P(t1)iLcKD(t1, t)

= ∫

t

0
dt1 eiLt1 Tr[ρb(t1)(

P
M
⋅∇R + Fc ⋅∇P + iLrot)KD(t1, t).

(B3)

In addition,

Tr[ρb(t1)
P
M
⋅∇RKD(t1, t)] = −

P
M
⋅ Tr[(∇Rρb(t1))KD(t1, t)]

Tr[ρb(t1)iLrotKD(t1, t)] = −ΠT
⋅M−1

⋅ Tr[∇θρb(t1)KD(t1, t)]
−∇Π ⋅ Tr[ρb(t1)∇θUIKD(t1, t)]

(B4)

since Tr[ρb(t1)KD(t1, t)] = 0. We then have

I = ∫
t

0
dt1 eiLt1{−

P
M
⋅M1(t1, t) +∇P ⋅M2(t1, t)

−ΠT
⋅M−1

⋅M3(t1, t) −∇Π ⋅M4(t1, t)}

= ∫

t

0
dt1 {−

P(t1)
M
⋅M1(t1, t)) +∇P(t1) ⋅M2(t1, t)

−Π(t1)T ⋅M(t1)−1
⋅M3(t1, t) −∇Π(t1) ⋅M4(t1, t)},

(B5)

where M1, . . ., M4 are defined in Eq. (38). Use of this expression
yields Eq. (37).

APPENDIX C: ρb(t ) AND ρL(t ) DENSITIES
An explicit relation between ρb(t) and ρL(t) is required in order

to express average values in a convenient form. For this purpose, we
consider a projection operator

PA(t)f = ⟨ fC(r1)⟩t ∗ ⟨CC⟩
−1
t (r1, r2) ∗ C(r2) (C1)

and its complement QA(t) = 1−PA(t). The adjoint of this projector
is defined by

P†
A(t)f = Tr[fC(r1)] ∗ ⟨CC⟩−1

t (r1, r2) ∗ C(r2)ρL(t) (C2)

and its complement Q†
A(t) = 1−P†

A(t). The vector C(r) = {1, Ã(r)}
is expressed in terms of the deviations Ã(r) ≡ A(r) − ⟨A(r)⟩t of the

fields A(r) in Eq. (27). Using this notation, we observe that 1 is not a
field extending over space but a single number, while Ã(r) is a field
variable; hence, we can write

P†
A(t)f = Tr[ f ]ρL(t)

+ Tr[ f Ã(r1)] ∗ ⟨ÃÃ⟩−1
t (r1, r2) ∗ Ã(r2)ρL(t). (C3)

Taking f = ρb(t) and using the fact that Tr[ρb(t)A(r)] = ⟨A(r)⟩t ,
we obtain P†

A(t)ρb(t) = ρL(t). We may then write ρb(t) = ρL(t)
+ Q†

A(t)ρb(t).
Applying this projector to Eq. (22), we have

P†
A(t)∂tρb(t) = Tr[(∂tρb(t))C(r1)] ∗ ⟨CC⟩−1

t (r1, r2)

∗C(r2)ρL(t)

= Tr[(∂tρL(t))C(r1)] ∗ ⟨CC⟩−1
t (r1, r2)

∗C(r2)ρL(t). (C4)

Since the local nonequilibrium distribution function may be
written as

ρL(t) =
∏λ(Nλ!h3Nλ)

−1eC(r)∗ϕC(r,t)

Tr[∏λ(Nλ!h3Nλ)−1eC(r)∗ϕC(r,t)]
, (C5)

with ϕC = (0, ϕA), we have

∂tρL(t) = (∂tϕC(r, t)) ∗ C(r)ρL(t)

= (∂tϕA(r, t)) ∗ Ã(r)ρL(t) (C6)

and

P†
A(t)∂tρb(t) = (∂tϕC(r, t)) ∗ C(r)ρL(t) = ∂tρL(t). (C7)

From this result, we can write

∂tρb(t) = −iL0(P†
A(t)ρb(t) + Q†

A(t)ρb(t))

= −iL0ρL(t) − iL0Q†
A(t)ρb(t) (C8)

and

Q†
A(t)∂tρb(t) = ∂tρb(t) − ∂tρL(t) = ∂tQ

†
A(t)ρb(t). (C9)

Using Eqs. (C8) and (C9), we have

∂tQ†
A(t)ρb(t) = −Q

†
A(t)iL0ρL(t) −Q†

A(t)iL0Q†
A(t)ρb(t). (C10)

To solve this equation, we introduce the projected propagator
U†

QA
(0, t) that is the solution of the evolution equation

∂tU†
QA
(0, t) = −Q†

A(t)iL0U†
QA
(0, t) (C11)

and its inverse (U†
QA
)
−1
(0, t) whose evolution is given by

∂t(U†
QA
)
−1
(0, t) = (U†

QA
)
−1
(0, t)Q†

A(t)iL0U†
QA
(0, t). (C12)

Formally, the solution of Eq. (C11) can be written as

U†
QA
(0, t) = T+ exp(−∫

t

0
dt1 Q†

A(t1)iL0), (C13)
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where the time ordering operator T+ orders operators with smaller
time argument to the right of operators of larger time argument.

Defining an operator G(t) = (U†
QA
)
−1
(0, t)Q†

A(t)ρb(t) and
using the above results, its differential equation is given by

∂tG(t) = −(U†
QA
)
−1
(0, t)Q†

A(t)iL0ρL(t). (C14)

Integration of this equation gives

G(t) = Q†
A(0)ρb(0)

−∫

t

0
dt1 (U†

QA
)
−1
(0, t1)Q†

A(t1)iL0ρL(t1), (C15)

from which we find

Q†
A(t)ρb(t) = U

†
QA
(t, 0)Q†

A(0)ρb(0)

−∫

t

0
dt1 U†

QA
(t, t1)Q†

A(t1)iL0ρL(t1). (C16)

It follows that

ρb(t) = ρL(t) + U†
QA
(t, 0)Q†

A(0)ρb(0)

−∫

t

0
dt1 U†

QA
(t, t1)Q†

A(t1)iL0ρL(t1). (C17)

This equation may be written in another form by using −iL0ρL(t)
= −Ȧ(r) ∗ ϕA(r, t)ρL(t) and the fact that Q†

A(t)iL0N(r)ρL(t) = 0
along with Q†

A(t)iL0(∫dr EN(r))ρL(t) = 0 since ϕE(r, t) = −β. We
have

ρb(t) = ρL(t) + U†
QA
(t, 0)Q†

A(0)ρb(0)

−∫

t

0
dt1 U†

QA
(t, t1)(QA(t1)Ṅγ(r)

+QA(t1)ġN(r))ρL(t1), (C18)

where the use of the identity Q†
A(t)iL0f ρL(t) = (QA(t1)iL0f )ρL(t1)

for some function f has been made.
The fluxes in Eq. (C18) are Ṅγ(r) in Eq. (19) and

ġN(r) = −∇r ⋅ τ(r) + Ff(r), (C19)

where the fluid stress tensor is

τ(r) =
N

∑
i=1

⎡
⎢
⎢
⎢
⎢
⎣

pipi
m
−

1
2

N

∑
j≠i
(∑

ν
ΘS

iΘ
ν
j rij∇rVSν

+ΘR
i Θ

R
j rij

na
∑

k,k′=1
∇r(k)i

Vkk′(∣r
(k)
i − r

(k′)
j ∣)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

δ(ric − r) (C20)

in the small gradient approximation,59 and the local force on the
fluid is

Ff(r) = −
N

∑
i=1
[

C

∑
b=N

ns
∑
α=1

Θb
α(Θ

S
i∇rVSb(r

α
)

+ΘR
i

na
∑
k=1
∇raki

Vkb(r
(k)α
ic ))]δ(ric − r). (C21)

We may then write Eq. (C18) for an isothermal system as

ρb(t) = ρL(t) + U†
QA
(t, 0)Q†

A(0)ρb(0)

−β∫
t

0
dt1 U†

QA
(t, t1)(QA(t1)J

R
γ (r) ∗ μ̃γ(r, t1)

+QA(t1)jγ(r) ∗∇rμ̃γ(r, t1)

+QA(t1)τ(r) ∗∇rv(r, t1)
+QA(t1)Ff(r) ∗ v(r, t1))ρL(t1), (C22)

which is the relation we sought. The initial condition term will decay
on a molecular time scale in view of the projected evolution. In addi-
tion, if the initial condition is ρb(0) = ρL(0), this term is identically
zero. Thus, we can neglect it in the computation. In addition, since
JR(r) ≡ JRA(r) = −J

R
B(r), we can express the reactive contribution in

terms of the chemical affinity A(r, t) = μA(r, t) − μB(r, t) as

QA(t1)J
R
γ (r) ∗ μ̃γ(r, t1) = QA(t1)J

R
(r) ∗A(r, t). (C23)
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