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In this article the configurational space of two simple protein models consisting of polymers com-
posed of a periodic sequence of four different kinds of monomers is studied as a function of temper-
ature. In the protein models, hydrogen bond interactions, electrostatic repulsion, and covalent bond
vibrations are modeled by discontinuous step, shoulder, and square-well potentials, respectively. The
protein-like chains exhibit a secondary alpha helix structure in their folded states at low temperatures,
and allow a natural definition of a configuration by considering which beads are bonded. Free ener-
gies and entropies of configurations are computed using the parallel tempering method in combina-
tion with hybrid Monte Carlo sampling of the canonical ensemble of the discontinuous potential sys-
tem. The probability of observing the most common configuration is used to analyze the nature of the
free energy landscape, and it is found that the model with the least number of possible bonds exhibits
a funnel-like free energy landscape at low enough temperature for chains with fewer than 30 beads.
For longer proteins, the free landscape consists of several minima, where the configuration with the
lowest free energy changes significantly by lowering the temperature and the probability of observing
the most common configuration never approaches one due to the degeneracy of the lowest accessible
potential energy. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729850]

I. INTRODUCTION

Statistical mechanical modeling has helped significantly
in addressing the question of why protein folding occurs so
rapidly in spite of the astronomically large number of possi-
ble configurations available to a protein. It has been suggested
that folding occurs on funnel-shaped free energy landscapes
rather than involving a single microscopic pathway through
a complicated landscape.1 Onuchic, Dill, Wolynes and co-
workers proposed that a “folding funnel” is the special char-
acteristic of foldable proteins that directs the folding protein
into the native state without the need for a definite pathway.2–9

According to this picture, topological features of the free en-
ergy landscape, defined in a coarse-grained sense by averag-
ing over conformations of the protein with similar character-
istics, assist the folding process by channeling or funneling
the evolution of configurations. The folding of a protein is
viewed as a process in which the protein glides down in the
funnel-shaped free energy landscape as the temperature drops
or as time progresses along a multitude of different paths to-
wards its native structure.6, 7, 9, 10 According to this viewpoint,
structures with low free energies are situated within a basin of
a broad energy valley and a protein in a configuration associ-
ated with one of the valleys can move quickly in the funnel to
the lowest free energy state.

Of course the true free energy landscape is never a simple
funnel, and the configurational space of a protein is a highly

a)Electronci mail: hbayat@chem.utoronto.ca.
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c)Electronci mail: jmschofi@chem.utoronto.ca.

multi-dimensional space. Even for small proteins, its dimen-
sionality ranks in the several hundreds.11 Within this high di-
mensional space, the free energy landscape can feature many
local minima separated by energetic and entropic barriers.

Although the free energy landscape of proteins is often
considered to be a key component in understanding the mech-
anisms of protein folding, the characterization of the structure
of the free energy landscape is nebulous due to the difficulty
of identifying the relationship between different conforma-
tions of proteins and determining whether particular config-
urations are within the same configurational basin. The diffi-
culty of identifying conformations of proteins is compounded
by the computational challenge of achieving converged sam-
pling of available configurations for realistic protein models.

In this paper, studies of the free energy landscape of a
protein-like chain in the absence of any fluid are presented.
Such a study is not feasible at present for realistic models of
proteins, so simplified models are used to capture the basic be-
havior of proteins. Discontinuous potentials are used for the
interaction potentials, where attraction and repulsion are de-
fined as step and shoulder potentials respectively. The hybrid
Monte Carlo (HMC) method12 is applied for the sampling of
the free energy landscape of a protein-like chain in which the
Monte Carlo sampling is done using parallel tempering (PT)
and the generation of trial configurations is carried out by dis-
continuous molecular dynamics (DMD). The PT method13–15

improves the convergence properties of Monte Carlo sam-
pling by decreasing the correlation length of samples in the
Markov chain of states.16

It is shown that for two simple protein models, each
consisting of a periodic sequence of four different kinds of
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bead, the folded state exhibits a secondary alpha helix struc-
ture. It is demonstrated that the relative configurational en-
tropies of the protein-like chains are independent of temper-
ature for the discontinuous potential models, which makes it
possible to compute the relative configurational entropies and
the free energies of the configurations very accurately. Rel-
ative configurational free energies at different temperatures
can be determined from relative populations at those temper-
atures. The free energy results can be interpreted in terms
of the free energy landscape picture by examining the dom-
inance of the most probable configuration as a function of
temperature.

In Sec. II the models and their parameters are described,
and it is shown that relative configurational entropies are tem-
perature independent in the models. A simplified three state
model is also presented to facilitate the interpretation of the
simulation results. In Sec. III, the results for the observed
structures, configurational entropy, and free energy differ-
ences are presented, and the shape of the free energy land-
scape is analyzed both for short and long chains. Conclusions
are given in Sec. IV.

II. MODELS OF THE PROTEIN-LIKE CHAIN

In this article we consider a beads on a string model of
a protein-like chain in which each bead represents an amino
acid or residue. The chain consists of a repeated sequence
of four different kinds of beads. While having four different
types of beads is not enough to represent the 20 different types
of amino acids, it preserves at least some of the differences
between amino acids. The interactions between these beads
are designed to mimic the interactions that lead to the forma-
tion of common motifs in protein structure, such as the alpha
helix. Previous studies suggest that chains containing only 6,
8, or 12 monomers are too short to fold into compact states
at low temperatures, while somewhat longer chains with 25
monomers can capture folded helical states.17 Here, chains of
moderate lengths of 15 to 35 beads have been used to facilitate
the exploration of the free energy landscape.

The models analyzed here allow for attractive inter-
actions, intended to mimic hydrogen bonds between non-
adjacent residues, between beads separated from each other
by 4n beads, where n ≥ 1, and with additional restrictions
on the possible hydrogen bonds to be specified below. Sev-
eral versions of the models of protein-like chains have been
considered, but only the results for two of them are pre-
sented here. Models were selected based on the similarity of
preferred structures in the model to those observed in real
proteins.

To make contact with real proteins, physical units are
used in the definition of the model, although these should not
be taken too literally. In particular, lengths will be expressed
in Ångströms, energies in kJ/mol, and masses in atomic mass
units.

The two models analyzed here differ in the hydrogen-
bond potentials, while other interactions are the same. In to-
tal, four different potentials are used in these models. The first
kind of potential acts between the nearest and the next near-
est neighbors and restricts the distance between the beads to

specific ranges by applying an infinite square-well potential
similar to Bellemans’ bonds model.18 Figure 1(a) shows the
shape of this kind of potential. To mimic a covalent bond be-
tween two consecutive amino acids in the protein, the distance
between two neighboring beads is restricted to the range from
3.84 Å to 4.48 Å. This potential allows these distances to vi-
brate around values close to the distance between stereocen-
ters used in Ref. 19. Bond angle vibrations are similarly rep-
resented by defining infinite square-well potentials between
next-nearest neighbors in the chain. Restricting their distance
to a range from 5.44 Å to 6.40 Å generates a vibration angle
between 75◦ and 112◦. For simplicity, dihedral angles are not
considered in our models, but as discussed later, some restric-
tions on hydrogen bonds are employed to create rigidity in the
backbone of the protein-like chain similar to the rigidity that
results from the dihedral angle interactions in more detailed
potentials.

Hydrogen bonds are modeled by an attractive square-well
potential, depicted in Fig. 1(b). In all models investigated
here, the attractive forces are defined between beads i and
i + 4n (with n integer) to resemble the hydrogen bonds in
alpha helix structures. However, the two models differ in the
possibility of these attractive bonds and the values of i and n.

In the first model, named model A, the attractive inter-
actions act between half the same type beads such that bonds
can be formed between two beads both with an index of the
form i = 4k + 1, or both with an index of the form i = 4k
+ 3, where k is an integer number.

In the second model, model B, only the beads with index
i = 4k + 2 can bond with each other, and n cannot be 2 or
3. This means that there is no attractive bond between beads
separated along the chain by eight or twelve beads. Bonds
between beads i and i + 8 as well as i and i + 12 are disal-
lowed to make the occurrence of turns more difficult in the
protein-like chain and effectively make it more rigid. This re-
striction has a similar function to torsional interaction poten-
tials defined in terms of dihedral angles along the backbone of
the chain in more detailed models where they prevent a pro-
tein from bending over easily. In Fig. 2 the possible attractive
bonds for the two models are presented for a chain of length
25 in which subsequent beads were labeled A through Y. It
will be shown that the two models have different thermody-
namic characteristics and important qualitative differences in
their free energy landscape due to the difference in the hydro-
gen bonding interactions.

For both models, the parameters for the attractive square-
well potential, σ 1 and σ 2, are chosen to be 4.64 Å and 5.76 Å
with a mid point of 5.2 Å, which is close to the translation of
5.4 Å along each turn of an alpha helix. Compared to cova-
lent bonds, these attractive interactions act across longer dis-
tances. The depth of the potential well ε is 20 kJ/mol and the
mass of each bead is set to 2 × 10−25 kg, which is close to
120 amu.

To represent electrostatic interactions of the atoms, repul-
sive interactions act between beads 1 + 4k and 4k′, where k
and k′ are integers and k �= k′. The repulsive interaction takes
the form of a shoulder potential, shown in Fig. 1(c). The range
of the shoulder is set to be from 4.64 Å to 7.36 Å, while
the height is 0.9ε. The effect of changing the number of step

Downloaded 27 Jun 2012 to 142.150.226.11. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



245103-3 Bayat Movahed, van Zon, and Schofield J. Chem. Phys. 136, 245103 (2012)

(a) (b)

(c) (d)

FIG. 1. Model potentials: the (a) infinite square-well potential, (b) attractive step potential, (c) repulsive shoulder potentials, and (d) hard core repulsion.

repulsions in a few models was evaluated in terms of mini-
mizing the free energy. It turned out that changing the num-
ber of repulsions does not have a huge impact on the shape of
free energy landscape around the native structure point. Since
the repulsion between the beads increases the potential energy
while decreasing the configurational entropy, the most com-
mon structures at low temperatures do not have any repulsive
interactions. Therefore, the two models differ only in their at-
tractive potentials, while their repulsive interactions are the
same.

Finally, all other bead pairs for which no covalent bonds,
hydrogen bonds, or shoulder repulsive interactions are defined
interact via a hard sphere repulsion to account for excluded
volume interactions at short distances, depicted in Fig. 1(d).
The hard sphere diameter is set to be 4.64 Å, which is slightly
different from the value of 4.27 Å used by Zhou et al.19

The reduced temperature is defined as T* = (kbT)/ε,
where ε is the potential depth of the square-well attractive
interactions, and β* is the inverse of the reduced temperature,
β* = 1/T*. Given the value of ε = 20 kJ/mol, T* = 1.0 corre-
sponds to 2400 K. This means that β* = 8 (T ∗ = 1

8 ) roughly
corresponds to standard room temperature, 300 K.

A. Definition of configurations

One of the advantages of using discontinuous potentials
is the ease of comparing configurations. The bonds are de-
fined using the specific range of bead separations rij in which
the potential energy V = 1

2

∑
ij U (rij ) is equal to a specific,

non-zero value. Since only one attractive bond can exist be-
tween each bead pair (i, j) in the current models, each con-
figuration or structure can be represented by a matrix of
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FIG. 2. Possible attractive bonds of (a) model A, and (b) model B for a chain of 25 beads.

interactions in which the entry at row i and column j is unity if
i and j are bonded and zero otherwise. Because bonded inter-
actions largely determine the form of the protein, this matrix
can be used to identify the configuration of the protein-like
chain. Thus, by comparing the matrices, identical structures
can be easily found.

However, for ease of presentation, a more readable al-
phabetical notation for configurations is applied. Each bead
is represented by a subsequent letter from the alphabet and
each bonded interaction is shown by a pair of letters. The
two-dimensional matrix can thus be represented by a string of
alphabetical pairs. Since most of the studied cases involve 25-
bead chains, A to Y have been used to label different beads.
For chains longer than 26 beads, both capital and small letters
can be used.

B. Temperature independence of relative
configurational entropies

The definition of configurations presented above was
based on the presence of attractive bond interactions. Within
the model, having a certain set of bonds (and no others) leads
to a specific potential energy Uc for each configuration c. As
shown below, this leads to a temperature independent relative
configurational entropy.

The configurational entropy of any particular configura-
tion c is the entropy of a sub-ensemble in which the phase
points are restricted to those of configuration c. The discrete
nature of the interactions allows configurational space to be
partitioned into microstates by defining an index function for
a configuration c that depends on the set of spatial coordinates
of the chain R

χc(R) =
{

1 if only bonds in c are present,

0 otherwise.

The partitioning of configurational space arises naturally by
expanding the product in the identity

1 =
nb∏
i=1

(1 − H (xi − σ2) + H (xi − σ2))

=
nb∏
i=1

(H (σ2 − xi) + H (xi − σ2)) (1)

=
ns∑

k=1

χck
(R), (2)

where nb is the number of attractive bonds in the model,
ns = 2nb is the number of microstates, and H(x) is the Heavi-
side function

H (x) =
{

1 x ≥ 0,

0 otherwise.

In Eq. (2), xi is the distance between monomers in the ith
bond, and σ 2 is the critical distance at which an attractive hy-
drogen bond is formed. For notational simplicity, we order the
index of configurations based on the number of bonds start-
ing with the configuration with no bonds, χ1(R) = ∏nb

i=1 H (xi

− σ2), and ending with the configuration with the maximum
number of bonds, χns

(R) = ∏nb

i=1 H (σ2 − xi).
In the canonical ensemble, the probability fobs(c, T) of

observing a configuration c at temperature T is

fobs,c = e−β(Fc−F ), (3)

where Fc is the free energy of configuration C, and F is the
full free energy of the system. By definition, one has

e−βFc = 1

h3N

∫
dR dP χc(R)e−β

[∑N
i=1

|pi |2
2m

+V (R)
]
, (4)

where N is the number of beads, m is their mass, and V is
the potential energy function. The configurational entropy is
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related to Fc via

Fc = Ec − T Sc, (5)

where Ec is the average energy of configuration c at temper-
ature T. Since its potential energy V is always equal to Uc

when it is finite and χ c = 1, one has

Ec = Uc + 3

2
NkBT . (6)

Combining Eqs. (4)–(6), one finds

Sc = 3

2
NkB ln

(
2πme

βh2

)
+ kB ln

∫ ′
dR χc(R), (7)

where the integral is restricted to sum over configurations that
satisfy all geometric constraints due to the infinite square-well
and hard core repulsions. Thus the relative entropy of two
configurations c1 and c2 at a specific temperature is

�Sc1c2 = Sc1 − Sc2 = kB ln

∫ ′
dR χc1 (R)∫ ′
dR χc2 (R)

, (8)

which does not depend on temperature.
From Eqs. (6) and (7) it can be concluded that the free

energy of a configuration is

Fc = Uc − 3

2
NkBT ln

(
2πm

βh2

)
− kBT ln

∫ ′
dR χc(R),

(9)
where the second term is the same for all the configurations at
temperature T.

Because relative configurational entropies do not depend
on temperature, relative entropies can be determined from a
single run at a temperature T, using

�Sc1c2 = �Ec1c2 − �Fc1c2

T

= �Ec1c2

T
+ kB ln

fobs(c1, T )

fobs(c2, T )
(10)

= �Uc1c2

T
+ kB ln

fobs(c1, T )

fobs(c2, T )
. (11)

Therefore, no approximation is necessary to calculate the
relative configurational entropies in contrast to molecular dy-
namics (MD) studies utilizing smooth potentials (see e.g.,
Ref. 20).

C. Simulation techniques

The simulation results presented here were obtained uti-
lizing a sampling method that uses a combination of dynam-
ical updates based on DMD and PT exchange moves. In this
approach, a number of replicas are updated simultaneously
using molecular dynamics (appropriate for the discontinuous
potential systems21) for a fixed amount of time. At the start
of a dynamical update, the velocities of all beads in the chain
are drawn from the Maxwell-Boltzmann distribution for each
replica at the temperature appropriate for that replica. Since
the DMD is time-reversible, exactly conserves energy and
preserves phase space volume,22 the limit distribution of the

Markov chain of states for each replica is canonical at the
temperature of the Markov chain.12 Furthermore since the to-
tal energy is conserved exactly in the dynamics, the updates
provide a rejection-free means of moving all degrees of free-
dom simultaneously. To enhance the sampling efficiency, the
dynamical updates are combined with replica exchange up-
dates. The replica exchange moves are designed so that the
states at each temperature are canonically distributed.13, 14 The
process of drawing velocities, DMD dynamics, and PT ex-
change moves is repeated until enough independent statistics
on the frequency at which different configurations are seen is
gathered.

D. Simplified three state model

In the simulations, one can easily measure the frequency
of occurrence fobs(c) of configurations c at each temperature
in the PT replica set. The accuracy of fobs(c) is O(

√
fobs(c)),

and thus is highest for the most frequently occurring (domi-
nant) structure. For that reason, below, we will often plot the
observed frequency f* of the most common structure, i.e.

f ∗ = max
c

fobs(c), (12)

as a function of the inverse temperature β. To facilitate the in-
terpretation of such a plot, it is helpful to consider its form for
the following, simplified three-state model. The three states
are configurations with energies E1, E2, and E3, and entropies
S1, S2, and S3, respectively. As in the actual model of the
protein-like chain, the values of entropies do not depend on
temperature. The second state will furthermore be taken to be
n fold degenerate (this is thus really a n + 2 state model).

For each state in this model, the observational frequency
is

fobs(c, β) = e−βEc+Sc/kB

Z(β)
, (13)

where c ranges from 1 to 3 and

Z(β) = e−βE1+S1/kB + n2e
−βE2+S2/kB + e−βE3+S3/kB . (14)

We will assume that E1 < E2 < E3 and S1 < S2 < S3, such
that configuration 1 models the native state with lowest energy
and lowest entropy, configuration 3 models the unfolded state
with high energy and high entropy, while configuration(s) 2
can be interpreted as intermediate. Because only relative en-
ergies and entropies affect f*, we can set E3 and S1 to zero.
Furthermore, one can fix the temperature scale by setting E1

to −1. That leaves just four parameters in the model: n2, E2,
S2 and S3 (subject to the constraint that S2 < S3).

Figure 3 shows three examples of the behavior of f* for
this model, corresponding to the following choices of the pa-
rameters: E2 = −0.65, S2 = 4, S3 = 5, and n2 = 1, 2, and
3, respectively. One sees a “bouncing” signal as subsequent
states become dominant when temperature is varied. There
are cusp-shaped minima where the identity of the dominant
state changes. At that point, several configurations are equally
likely. If one neglects the other, non-dominant, configurations
at that point, then the value of f* at a cusp should be one over
the number of competing structures, and this is borne out by
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FIG. 3. Variation of the probabilities of the most common structure versus
the inverse temperature for the three state model with parameters E2 = −0.65,
S2 = 4, S3 = 5, and three different values for n2.

the plots shown in Fig. 3, which show cusp depths close to
1/2, 1/3, and 1/4, respectively. As β increases (temperature
gets lower), the frequency of observing state 1 (the “native”
state) reaching almost 100%.

One can expect similar results for the protein-like chain
model used in the simulations. The main difference with the
three-state model is the presence of many more configura-
tions. Some of these extra states will be irrelevant (have neg-
ligible fobs) because of their low entropy, but one could expect
to see extra bounces in the plots for the real model from some
addition relevant states.

III. RESULTS

A. Free energy landscape

To characterize the (free) energy landscape at a specific
temperature, the most common structures are identified and
their relative free energies computed at that temperature. Two
structures are close in the landscape if they have similar con-

TABLE II. Most common configurations of the model B 25-bead chain.

β* The most common structure fobs(%)
1.5 No bond 22.4 ± 1.2
3.0 No bond 6.7 ± 1.0
3.5 BF JN 4.0 ± 0.6
4.2 BF FJ NR RV 6.5 ± 0.8
4.5 BF BR BV FJ FV JN NR RV 7.5 ± 1.0
5.3 BF BR BV FJ FV JN NR RV 46.4 ± 1.6
6.0 BF BR BV FJ FV JN NR RV 76.0 ± 1.2
7.5 BF BR BV FJ FV JN NR RV 94.1 ± 0.8
13.5 BF BR BV FJ FV JN NR RV 99.9 ± 0.0

β* The second most common fobs(%)

1.5 BF 3.5 ± 0.6
3.0 BF 5.6 ± 0.8
3.5 BF NR 4.0 ± 0.6
4.2 BF FJ JN RV 4.9 ± 0.8
4.5 BF FJ JN NR RV 6.4 ± 0.8
5.3 BF BR BV FJ JN NR RV 10.1 ± 0.8
6.0 BF BR BV FJ JN NR RV 6.8 ± 0.8
7.5 BF BR BV FJ JN NR RV 1.9 ± 0.6
13.5 N/A N/A

figurations, which means that they have a large number of
bonds in common. For model A, the dominant structures
are shown in Table I, while those for model B are given in
Table II, both for a chain length of 25. The dominant struc-
tures at low temperatures are designed to be helical in nature,
with long chains allowing for a primitive tertiary structure in
which the helix folds back on itself (see Fig. 4). The most
common structures at any temperature are those with the low-
est Helmholtz free energy at that temperature. Therefore, at
low enough temperatures, when the effect of entropy is small,
the most common structure is the one with the lowest pos-
sible potential energy, which will only have attractive bonds
and no repulsive bonds. Therefore, unless otherwise specified,
here the term “bond” refers only to an attractive bond (or hy-
drogen bond) and not repulsive or covalent bonds. Using their
interaction matrices, it is relatively easy to count the number

TABLE I. Most common configurations of the model A 25-bead chain.

β* The most common structure fobs(%)
1.5 No bond 14.2±0.6
14.0 AE AI AY CG CK CS CW EI GK GO GS IY KO KS KW MQ MU OS QU SW 9.7±0.6
24.0 AE AI AY CG CK CS CW EI GK GO GS IY KO KS KW MQ MU OS QU SW 10.6±0.6
38.4 AQ AU AY CG CO CS CW EI EM GK GO GS GW IM KO KS OS QU SW UY 8.5±0.6
57.5 AQ AU AY CG CO CS CW EI EM GK GO GS GW IM KO KS OS QU SW UY 7.7±0.6
72.5 AE AI AM CG CK CO CS EI GK GS GW KO KS KW OS OW QU QY SW UY 8.1±0.6
87.5 AE AI AM AQ AU AY CG CK EI EY GK IM IQ IY MQ MU OS QU QY SW UY 8.2±0.6

β* The second most common structure fobs(%)

1.5 SW 2.1±0.2
14.0 AE AI AY CG CK CO CS CW EI GK GO IY KO KW MQ MU OS OW QU SW 8.7±0.6
24.0 AE AI AY CG CK CO CS CW EI GK GO IY KO KW MQ MU OS OW QU SW 9.6±0.6
38.4 AE AI AY CG CK CO CS CW EI GK GO IY KO KW MQ MU OS OW QU SW 6.6±0.4
57.5 AE AI AM CG CK CO CS EI GK GS GW KO KS KW OS OW QU QY SW UY 4.5±0.4
72.5 AQ AU AY CG CO CS CW EI EM GK GO GS GW IM KO KS OS QU SW UY 7.5±0.4
87.5 AE AU AY CG CS CW EY GK GS GW IM IQ KO KS KW MQ OS OW SW UY 6.6±0.6
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FIG. 4. Folded helical structure for model B with eight bonds.

of occurrences of the different structures and to find the most
common structures.

According to the diagram in Fig. 2(b), for model B, the
maximum number of attractive bonds is 8 for the 25-bead
chain. As expected, the most common structure for model B
at low temperatures, β* ≥ 4.5, has eight attractive bonds (cf.
Table II) and therefore has the lowest potential energy for this
model. According to Table I, the lowest potential energy con-
figuration in model A for the 25-bead chain has 21 attractive
bonds. However, according to Fig. 2(a), 36 possible attrac-
tive bonds are available for the 25-bead chain in model A.
This means that either the configurations with lower energies
that have more than 21 attractive bonds are not geometrically
accessible (due to constraints in the model) or their config-
urational entropies are too low to be observed at these tem-
peratures. It will be shown later (Sec. III D) that the former
scenario is the case. However, if the latter scenario were true,
the lower energy configurations would become dominant by
reaching lower temperatures.

Within the framework of the model, a folding funnel is
identified as a region of phase space points corresponding to
a set of configurations from which the folded structure is eas-
ily and rapidly accessible as the temperature is lowered. This
means that the barriers between local minima located inside
the funnel, such as those arising from entropic decreases as-
sociated with the formation of new bonds, are small. As the
temperature is lowered, new minima appear in the funnel re-
gion of the free energy landscape, corresponding to nearby
configurations that differ in relatively few bonds from the pre-
viously favored structures. If barriers between nearby states
in the landscape are small, the system rapidly equilibrates to
the presence of new minima and adopts a more folded struc-
ture. Although the specific pathway through which the system
folds may involve a number of intermediate structures, the in-
termediate structures emerge smoothly with temperature and
provide a channel to the folded structure.

A quantitative measure of the folding funnel can be ob-
tained by examining how the dominance f* of the most pre-
ferred structure changes with temperature, where f* is the
probability of observing the most common configuration de-
fined in Eq. (12). For real protein systems in which a single,
folded structure is thermodynamically stable, one expects that
f* is near unity for temperatures at which the protein is folded.
Furthermore, if the protein folds readily as the inverse tem-
perature β increases, then we expect df*/dβ to be large and
positive in the vicinity of the inverse folding temperature.

As can be seen in Table I, by decreasing the temper-
ature for model A, some dominant structures are observed,
but by decreasing the temperature further, the ratios of their
populations to the total population starts to decrease and new
structures become dominant. It can be concluded that in this
model, the shape of the landscape changes significantly by
varying the temperature, where at high temperatures the land-
scape is riddled with many local minima (many equally pre-
ferred structures) and one very deep but wide minimum (no
bonded structure), and at low temperatures there are a few
narrow deep minima. For model A, either there are deep local
minima inside a funnel shaped valley or there are only a few
deep local minima beside each other. At the studied tempera-
tures, there is no structure with a very large population, which
confirms that there is deep global minimum in the free energy
landscape. Since the most common structures at each temper-
ature differ from each other in a few bonds, these deep minima
are located close to each other in the landscape but not inside
a funnel in the sense that they are not structures that are ad-
jacent in the configurational space and can only be converted
into one another through intermediates. The barriers involved
in these conversions are high enough to make this a slow pro-
cess. For example, as can be seen in Table I, the first two most
common structures at β* = 57.5 differ in seven bonds. Hence
there are many barriers that must be overcome to go between
the two configurations because seven bonds must be broken
and seven new bonds must be formed. On the other hand these
two structures share thirteen bonds (65% of their total bonds),
which indicates that they are similar and therefore their loca-
tions in the landscape are still relatively close to each other.

Unlike the behavior observed in model A, a single domi-
nant structure is identified in model B by decreasing the tem-
perature, where the probability f* of the most common struc-
ture attains a value of nearly one at low temperatures (see
Table II). For β* ≥ 5.3, the free energy landscape consists
of a single channel in which there are several minima. The
most common structures for β* = 6 are presented in Table III.
None of the seven most common structures have a repulsive
bond. This is not surprising, since the formation of a repulsive
bond both limits the number of accessible conformations and
is energetically unfavorable. The most common structure for
β* ≥ 5.3, BF BR BV FJ FV JN NR RV, is the deepest point
in the funnel, and the six other most common structures listed
in Table III differ only in one bond from this structure. This
means that there is a funnel-shaped valley with a global mini-
mum corresponding to a folded helix and there are a few local
minima of higher free energy beside this deepest point of the
landscape. According to Table II, by lowering the tempera-
ture the deepest point of the funnel becomes deeper while the
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TABLE III. Most common configurations of the model B 25-bead chain at
β* = 6.

Rank Most common structure fobs(%)

1 BF BR BV FJ FV JN NR RV 76.0 ± 1.2
2 BF BR BV FJ JN NR RV 6.8 ± 0.8
3 BF BV FJ FV JN NR RV 3.8 ± 0.6
4 BF BR BV FV JN NR RV 1.9 ± 0.4
5 BF BR BV FJ FV JN RV 1.3 ± 0.4
6 BF BR BV FJ FV NR RV 1.0 ± 0.3
7 BF BR BV FJ FV JN NR 1.0 ± 0.3

other minima become shallower, since the population of the
most common structure reaches a value higher than 99.9%.
This implies that the funnel becomes smoother and steeper as
the temperature decreases, and the lowest free energy config-
uration becomes more accessible.

The variation of the probability of the most common
structure f* for the two models as a function of temperature is
shown in Fig. 5 for chains of 25 beads. For both models, there
is a cusp-shaped minimum at which a low-energy structure
becomes dominant. The value of the probability is very low
at the minimum, indicating many competing structures (see
Sec. II D). For model A, the probability of the most common
structure at low temperatures is fluctuating around a small
value of about 0.08, whereas for model B, the probability of
the most common structure nearly attains unity. This demon-
strates once more that the free energy landscape for model A
does not have a funnel-like shape.

It will become clear in Sec. III D that even for model
B, the funnel-like character of the free energy landscape does
not persist for chains longer than 29 beads due to geometric
frustration.

B. Entropy and free energy calculation
for the 25-bead chain in model B

As discussed in Sec. II B, and as expressed in Eq. (11),
the relative configurational entropies and consequently the
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FIG. 5. Variation of the probabilities of the most common structure f* versus
the dimensionless inverse temperature β* for chains with 25 beads.

TABLE IV. Potential energy in units of ε and relative entropy of the most
common structures of the model B 25-bead chain.

Configuration Uc/ε Sc/kB

1 AD 0.9 31.3 ±0.8
2 No Bond 0.00 31.8 ±0.6
3 BF −1 28.6 ± 0.6
4 BF JN −2 25.1 ± 0.6
5 BF NR −2 25.2 ± 0.6
6 BF JN RV −3 21.7 ± 0.4
7 BF FJ NR RV −4 17.8 ± 0.6
8 BF FJ JN RV −4 17.6 ± 0.6
9 BF FJ JN NR RV −5 13.2 ± 0.6
10 BF BR BV FJ JN NR RV −7 3.7 ± 0.8
11 BF BV FJ FV JN NR RV −7 2.9 ± 0.6
12 BF BR BV FJ FV JN NR RV −8 0

free energy difference of two configurations can be obtained
from the ratio of their probabilities at a specific temperature.
Since there are fewer possible structures in model B than in
model A, the statistical uncertainty in the populations, and
therefore also in the entropies and free energies, is smaller for
model B. For this reason, and because it is already clear that
model A does not have a funnel-like free energy landspace,
subsequent analysis will focus on the characteristics of
model B.

The value of the entropy of a configuration should de-
pend largely on the number of bonds that it has, since the
formation of a bond restricts the distance between a specific
pair of beads. As can be seen in Table IV, although the en-
tropies of configurations with the same number of bonds dif-
fer slightly, they are similar in magnitude. Typically, the en-
tropy decreases by increasing the number of bonds due to
additional geometric constraints, with the entropy loss typi-
cally on the order of 3kB per bond. Nonetheless, one sees that
configurations with the same energy have somewhat different
populations and therefore different entropies.

Although in principle, the entropy difference between
any two configurations can be calculated based on the ra-
tio of their populations, often there is little overlap between
the population distributions of the most common structure at
very low temperatures and the most common structure at very
high temperatures (e.g., configurations 2 and 12 of Table IV).
Since the configurational entropy difference is independent
of temperature, this difficulty is easily overcome by using one
or two intermediate configurations whose population distribu-
tion do have sufficient overlap at some range of temperatures.
Using the calculated entropies, one can compute the relative
Helmholtz free energy between any pair of configurations at
any temperature. This allows one to predict the population
of any structure at any temperature and predict the temper-
ature at which the population of two specific configurations
becomes equal. The potential energy and entropy of some of
the most common structures of model B for the 25-bead chain
are shown in Table IV.

The variation of β*�F versus the configuration index of
Table IV – which one could view as a simple way to plot the
free energy landscape – is shown in Fig. 6. The zero-point of
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FIG. 6. Variation of β*�F versus the configuration index of Table IV for
model B, where �F is the Helmholtz free energy difference with configura-
tion 1 in unit of ε.

this free energy plot was (arbitrarily) chosen to be the free
energy of configuration 1 (AD), i.e., free energies were com-
puted as �F1c = Uc − TSc − (U1 − TS1), where Uc and Sc

were taken from Table IV. Since both the entropy and the en-
ergy of the configurations are decreasing from configuration 1
to 12, the behavior of β*�F is very different for high and low
temperatures. At high temperatures (β* ≤ 3), entropy effects
dominate, and the configuration with the largest entropy in
Table IV (configuration 2) is the lowest free energy structure
for β* = 1.5 in Fig. 6. Note that the free energy of other struc-
tures increases with increasing number of attractive bonds. In
contrast, at lower temperatures, energy effects dominate the
free energy landscape, and indeed, in Fig. 6, the configura-
tion from Table IV, which has the lowest potential energy, is
seen to be the lowest free energy structure for β* = 6 and
β* = 12.

Using the values in Table IV, one can determine that for
β* ≥ 4.5, the folded helix configuration (configuration 12) be-
comes dominant, since for all the temperatures in that range,
this configuration has the lowest free energy. The simulation
results for the population of each configuration confirm this
prediction. When configurations are ranked according to their
populations, configuration 12 ranks 30th, 13th, and 5th for β*
values of 4.05, 4.2, and 4.35 respectively, while for β* ≥ 4.5,
it ranks first place.

The relative free energy of configurations 2 and 12 is
plotted against β* in Fig. 7. It can be seen that at β* ≈ 4 their
free energies are equal, which implies that their populations
are the same. Indeed, simulation results indicate that the pop-
ulations of configuration 2 and configuration 12 at β* = 3.9
are 1.0% and 0.5%, respectively and at β* = 4.05 are 0.6%
and 1.2%, respectively, which confirms that their population
should became equal in the range 3.9 ≤ β* ≤ 4.05.

It should be noted that in our calculations, structures that
have a population of less than 0.5% are not considered to sim-
plify computations. As a result, when calculating the proba-
bilities of the configurations with 25 beads, only 78 configura-
tions were used. Although this introduces a systematic error,
the predicted probabilities are very close to the observed ones
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FIG. 7. Temperature dependence of the free energy difference of configura-
tions 2 and 12 of 25-beadmodel B, as listed in Table IV, in units of ε.

from the simulation runs, as can be seen in Table V. Accord-
ing to this table, the predicted values agree better with the
simulation results at lower temperatures. The disagreement is
due to the fact that some configurations with very low popula-
tions have not been considered in the probability calculations,
but since these configurations occur more frequently at high
temperatures, neglecting their contribution leads to a larger
error at high temperatures.

C. Entropy and free energy calculation
for the 35-bead model B chain

The entropies and free energies of 35-bead configurations
are calculated in a similar way to the 25-bead case. Adding
only 10 beads to the chain changes the number of possible
attractive bonds from 8 in the 25-bead chain to 23 in the 35-
bead chain (cf. 2), which results in a much more complex free
energy landscape.

The dramatic change in landscape can be seen in Table VI
and Fig. 9, where we see that, unlike the 25-bead chain, the
probability of the most common structure does not approach
unity even at very low temperatures.

As can be seen in Table VI, by increasing β* (decreasing
temperature) a few structures become dominant at different
temperatures. Except for the lowest energy configuration with

TABLE V. Comparison of the predicted probability (ppred) and the simula-
tion results for the frequency (fobs), and their relative difference (�), for the
most common structures of the model B 25-bead.

β* Configuration ppred fobs �(%)

1.5 No Bond 0.206 0.165 25
1.5 BF 0.068 0.059 15
1.5 RV 0.059 0.065 9
5.0 BF BR BV FJ FV JN NR RV 0.949 0.941 0.8
5.0 BF BR BV FJ JN NR RV 0.020 0.019 5
5.0 BF BV FJ FV JN NR RV 0.010 0.012 17
6.0 BF BR BV FJ FV JN NR RV 0.988 0.980 0.8
6.0 BF BR BV FJ JN NR RV 0.005 0.005 0
9.0 BF BR BV FJ FV JN NR RV 0.999 0.999 0
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FIG. 8. Variation of the probabilities of the most common structure, f*, ver-
sus the β* for chains with 15, 20, 25, and 29 beads

23 attractive bonds, other energies are degenerated with mul-
tiple configurations possessing the same number of bonds. It
will be shown in Sec. III D that a structure with 23 attractive
bonds is geometrically prohibited. In fact, configurations with
21, 22, or 23 attractive bonds have not been observed in any
simulation runs.

One difference between the landscape of the 35-bead
chain and that of the 25-bead chain is the magnitude of the
entropic barriers between configurations with different ener-
gies. The most common structures in Table VI at high β* have
an energy of −19ε. Beside the two main configurations with
the energy of −19ε, which are presented in Table VI, there are
at least 18 other configurations with the same potential energy
but with lower entropies. Three structures with an energy of
−20ε and with relatively low entropies have been observed in
the runs as well, but, according to Table VI, these were never
among the first two most common structures. The configura-
tion with the potential energy of −20ε that has the highest
entropy is different in five bonds from the most common con-
figuration of Table VI. This implies that there is a substantial
entropic barrier between these configurations.

A second difference with the 25-bead case is that a few
different configurations of the 35-bead chain exist at low tem-

peratures and are observed with nearly the same frequency.
For example, as Table VI shows, the two most common
structures for 16.5 ≤ β* ≤ 53 have 19 attractive bonds.
While these two structures differ slightly in their populations,
structurally they differ by more than one bond, quite unlike
the seven most common structures of the 25-bead chain at
β* = 6 (cf. Table III) which only differ from each other by
one bond. Since the most common structures of the 35-bead
chain at low temperatures share most of their bonds, they are
near one another in the free energy landscape. However, since
the most common structure differs from other common struc-
tures by more than one bond, they do not necessarily lie inside
a single valley in the landscape. A more plausible interpreta-
tion is that the landscape at low temperatures for the 35-bead
chain consists of several minima that are close but not nec-
essarily inside the same channel, and that the landscape does
not have a single deep minimum at very low temperatures.

A final difference with the 25-bead case that becomes ap-
parent is that the range of energies and that of entropies for the
observed configurations are 8ε and 32kB, respectively, for 25-
bead chains, while these are 20ε and 140kB respectively for
35-bead chains. This confirms the view that the landscape of
the 35-bead chain is much wider than the 25-bead chain land-
scape. This also shows that studying the landscape requires a
much wider range of temperatures and more replicas.

D. Effects of the protein-like chain length

For 25-bead chains, the probability of the most com-
mon structure approaches unity at low temperatures, while
the longer 35-bead chain did not show this trend. There are
two possible reasons for this behavior. First, it is possible that
the studied range of temperatures was not sufficiently large
to observe the lowest energy configuration for long chains in
the simulation. The second possible reason is that the low-
est possible energy is not geometrically accessible consider-
ing the criteria of model B. The effect of the inaccessibility
of the lowest energy configuration is that several structures
with the same energy compete for the highest probability.
While the configurational entropies of these structures are
somewhat different, there is no configuration with a much

TABLE VI. Most common configurations of the model B 35-bead chain.

β* The most common structure fobs(%)
1.5 No Bond 11.7 ± 1.3
5.25 BF BZ Bd Bh FJ FV FZ Fd Fh JN Jd Jh NR Nd RV VZ Zd dh 7.2 ± 0.9
9.0 BF BZ Bd Bh FJ FV FZ Fd Fh JN Jd Jh NR Nd RV VZ Zd dh 18.8 ± 1.5
16.5 BF BR BV BZ Bh FJ FZ Fd Fh JN Jd Jh NR Nh RV Rh VZ Zd dh 25.8 ± 1.8
31.5 BF BR BV BZ Bh FJ FZ Fd Fh JN Jd Jh NR Nh RV Rh VZ Zd dh 24.7 ± 1.6
53.63 BF BR BV BZ Bh FJ FZ Fd Fh JN Jd Jh NR Nh RV Rh VZ Zd dh 23.6 ± 1.6

β* The second most common structure fobs(%)

1.5 dh 2.3 ± 0.6
5.25 BF BR BV BZ Bd Bh FJ Fd Fh JN Jh NR Nh RV Rh VZ Zd dh 5.3 ± 0.9
9.0 BF BR BV BZ Bh FJ FZ Fd Fh JN Jd Jh NR Nh RV Rh VZ Zd dh 15.4 ± 1.5
16.5 BF BZ Bd Bh FJ FV FZ Fd Fh JN Jd Jh NR Nd Nh RV VZ Zd dh 14.4 ± 1.4
31.5 BF BZ Bd Bh FJ FV FZ Fd Fh JN Jd Jh NR Nd Nh RV VZ Zd dh 16.7 ± 1.4
53.63 BF BZ Bd Bh FJ FV FZ Fd Fh JN Jd Jh NR Nd Nh RV VZ Zd dh 15.2 ± 1.3
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higher entropy than all the other structures with the same en-
ergy, and hence none of their maximum structural probabili-
ties approaches unity in the accessible temperature range. It
turns out that the second scenario is much more plausible. To
understand why, it is helpful to consider the thermodynamic
characteristics of model B for other chain lengths. For chains
of length 15, 20, 25, 29, 30, and 35, the maximum number of
attractive bonds are 3, 5, 8, 12, 17, and 23, respectively. The
temperature dependence of the probability of the most com-
mon structure for these cases is shown in Figs. 8 and 9.

One sees in Fig. 8 that for chains with 15, 20, 25, and 29
beads, after going through one or two minima, the probability
of the most common structure f* approaches unity at low tem-
peratures. In these cases, the most probable configurations are
also the ones with the lowest energy, i.e., with the maximum
number of attractive bonds. For the 29-bead chain there is a
distinctive peak in the probability of the most common struc-
ture at β* ≈ 7.5, which can be explained by the large entropy
difference between the most common structure with 11 bonds
and the most common structure with 12 bonds, which allows
the 11-bond configuration to become the most common struc-
ture for 4.35 ≤ β* ≤ 9. Apparently, at β* = 9, the energy
difference becomes equal to the entropy difference times T*,
so that for β* > 9 the structure with 12 bonds becomes the
most common structure.

Figure 9 shows that the situation is quite different for
longer chains. For the 30-bead chain, the maximum possi-
ble number of bonds is 17, but no such structure was ob-
served in the simulations, even when using different numbers
of replicas, different PT temperature sets, and different ranges
of temperatures. This strongly suggests that it is impossible to
satisfy the geometric constraints needed to form all possible
bonds. Once the geometric constraints cannot all be satisfied
for one particular chain length, this automatically implies that
they can also not be satisfied for longer chains. Indeed, in the
35 bead case, the lowest energy configuration is also not ob-
served.

As can be seen in Fig. 9, when 4.5 ≤ β* ≤ 7.5, the
probability of the most common structure increases for the
30-bead chain (similar to the behavior observed in 15, 20,
25, and 29 beads chain systems). The probability of the most
common structure then remains more or less unchanged up to
β* ≈ 15. After this plateau region, the probability decreases
until reaching a β* value at which the probability of the two
most common structures becomes equal (in this case, these
are the 15-bond structure with the highest entropy and the 16-
bond structure with the highest entropy), which can be seen
as a minimum in the graph. After passing this local mini-
mum, the structure with 16 bonds becomes the most common
structure. However, because there are at least six structures
with 16 bonds, the probability of the most common structure
is not close to one even at very low temperatures. One ex-
planation is that the structure with 17 bonds is geometrically
prohibited, leading to several energetically degenerate config-
urations with 16 bonds to become common at low tempera-
tures (their relative populations depending on configurational
entropy differences).

A second argument for the geometric frustration of the
lowest energy configuration for larger chain lengths can be
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FIG. 9. Variation of the probabilities of the most common structure, f*, ver-
sus the β* for the chains with 29, 30, and 35 beads. The result of the 29-bead
chain from Figure 8 is presented here as a reference.

found by slowly relaxing the geometric restrictions imposed
by the range of interaction of the attractive bonds in the
model. If the configuration is geometrically prohibited, then
by slowly increasing the bonding distance one should find
a critical value of the range at which the configuration sud-
denly becomes accessible, and since its energy is lower than
any other structure, that configuration should at the same time
suddenly become a very common, if not the most common,
structure.

The attractive bonds can be formed at a range 4.6 Å ≤ rij

≤ 5.8 Å (σ 1 = 4.6 Å and σ 2 = 5.8 Å), where rij is the distance
between beads i and j. To change the attractive range, only
σ 2 was increased. At σ 2 = 6.2 Å, it was possible to observe
the lowest energy configuration for the 30 bead chain (with
17 attractive bonds) at low temperatures, while this structure
was not observed for the runs with σ 2 ≤ 6.1 Å. Figure 10 il-
lustrates this by plotting the probability of the most common
structure as a function of temperatures for several values of
σ 2. For σ 2 = 6.4 Å, the probability of the 17 bonds structure
approaches one around β* = 27, and by increasing the value
of σ 2, this occurs at lower β*, since the entropic barriers be-
tween the low energies configurations, such as the configura-
tions with 15 bonds and 16 bonds, become smaller. The first
bump in Fig. 10 represents a temperature region where the
structure with 15 bonds becomes the most probable configu-
ration, and the second bump occurs at higher β* values, where
a 16-bond configuration becomes the most probable structure.
Since the entropy difference between the configurations with
different energies becomes smaller for larger σ 2, this range of
β*, where the structure with 15 bonds becomes the most com-
mon structure, becomes smaller for larger σ 2 values as can be
seen for σ 2 = 6.7 Å and σ 2 = 6.9 Å in Fig. 10.

We conclude that for chains smaller than 30 beads
the landscape consists of one deep funnel at low temper-
atures that contains several minima. The funnel becomes
steeper by decreasing the temperature. At very low tempera-
tures the landscape consists of a smooth funnel with a very
deep global minimum representing the configuration with
the maximum number of bonds. But for chains longer than
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FIG. 10. Variation of the probabilities of the most common structure versus
the β* for the 30-bead chain for different attractive bond interaction distances
(increasing σ 2 from the initial 5.8 Å to 6.4 Å 6.7 Å and 6.9 Å

29 beads, the landscape of the longer chains does not con-
sist of one deep funnel, even for low temperatures. Rather,
it consists of several minima or channels between which
there are entropic barriers that increase with increasing chain
length.

IV. CONCLUSIONS

In this work two different models of a protein-like chain
that differ primarily in the number of attractive interactions
were introduced and the characteristics of their free en-
ergy landscape was analyzed. Fewer bonding interactions are
present in the second model (model B), leading to a sys-
tem with less frustration and a free energy landscape that
possesses fewer local minima. The models were designed to
encourage the formation of helical secondary structural ele-
ments and such helices were observed in model B at low tem-
peratures. For long enough chains (>17 beads), model B also
allows a tertiary structure.

It was shown that for model B, the free energy landscape
of the 25-bead chain has a smooth funnel that has important
effects on both the dynamics and the thermodynamics of the
system. In this model, the free energy landscape at low tem-
peratures contains a deep valley with several minima around
it located inside one basin. As the temperature decreases, the
deepest point of the funnel becomes deeper, while the minima
around the deepest point become shallower. This trend contin-
ues until a temperature is reached in which all local minima
in the free energy landscape have vanished and only a single
global minimum exists. In contrast to model B, model A does
not exhibit a preference for a specific native structure at low
temperatures. This may be attributed to several factors, such
as the lack of rigidity of the chain in this model, several large
entropic barriers, and the possibility of having many struc-
tures with the same energy.

It was shown that the relative configurational entropy is
temperature independent. Hence, using the populations of the
configurations at different temperatures, the relative free en-
ergy and entropy of any pair of configurations can be cal-

culated. From the free energies of different structures at the
studied temperatures, the populations of all configurations at
any temperature were predicted and verified against simu-
lation results. These results agree reasonably with the sim-
ulation results, which shows one of the great advantages
of using discontinuous potentials to study the free energy
landscape.

In model B, the single funnel morphology of the free en-
ergy landscape persists for chains up to 29 beads long. How-
ever, for chains of 30 beads or longer, the simulation results
strongly suggest that the structure satisfying all possible at-
tractive bonds is geometrically prohibited, while at the same
time, the entropic barriers between the configurations with
different energies become larger. For long chains, the land-
scape at low temperatures consists of a few distinct channels
that are relatively close to each other but separated by high
barriers.

The observed landscape can provide insight into the
shape of the landscape of actual proteins. While for small
chains the native structure seems to be the lowest free energy
structure, the existence of several distinct funnels in the land-
scape of long chains suggests the possibility that the native
structure of real proteins is not necessarily the lowest free en-
ergy structure but may correspond to a configurational basin
that can be accessed easily during the folding dynamics. An-
other factor that should be considered for long proteins is
the important effect of temperature on the morphology of the
landscape. In our study, the basin containing the global mini-
mum becomes steeper as the temperature decreases for short
chains. However, for longer chains, the basin becomes steeper
while the deepest point of the landscape can shift from one
configuration to another configuration with slightly different
bonds over the same temperature range. Thus, for long pro-
teins, the structure may be more sensitive to temperature fluc-
tuations and by slightly changing the temperature the thermo-
dynamically stable configuration can shift to a configuration
that differs substantially.

It is likely that certain features of the models analyzed
here, such as the periodic nature of the bead interactions, lead
to unphysical qualitative characteristics of the free energy
landscape. It is probable that non-repeating arrangements of
beads, more typical of large, fast-folding proteins, are a neces-
sary condition for longer chains to have more funnel-like free
energy landscapes. Increasing the number of types of beads to
allow for unique, non-repeating sequences of residues would
enable models of larger proteins to be analyzed. Depending
on the nature of the specific bead-bead interactions, some
of these models would likely exhibit funnel-like landscapes,
even for long chains. Such models become cumbersome to
design. Non-periodic amino acid sequences could also be
modeled with a limited number of beads by prioritizing the
residue-residue interactions by strength and only accounting
for dominant interactions. A simplified model could explicitly
incorporate specific interactions between locally-stabilized
domains to capture the hierarchical and funnel-like nature of
protein folding.

The simulation results presented here can be used to an-
alyze the dynamics of the protein-like chain by computing
the first-passage time solution for the transition rates among

Downloaded 27 Jun 2012 to 142.150.226.11. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



245103-13 Bayat Movahed, van Zon, and Schofield J. Chem. Phys. 136, 245103 (2012)

the individual microstates. The individual rates between mi-
crostates can then be incorporated into a Markovian model of
the relaxation of the chain and the dynamics of the folding
process examined to probe how features in the free energy
landscape determine the relaxation profile of the protein-like
chain.23
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