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ABSTRACT
The single-particle and collective dynamics of systems comprising Janus motors, solvent, and reactive solute species maintained in nonequi-
librium states are investigated. Reversible catalytic reactions with the solute species take place on the catalytic faces of the motors, and the
nonequilibrium states are established either by imposing constant-concentration reservoirs that feed and remove reactive species or through
out-of-equilibrium fluid phase reactions. We consider general intermolecular interactions between the Janus motor hemispheres and the reac-
tive species. For single motors, we show that the reaction rate depends nonlinearly on an applied external force when the system is displaced
far from equilibrium. We also show that a finite-time fluctuation formula derived for fixed catalytic particles describes the nonequilibrium
reactive fluctuations of moving Janus motors. Simulation of the collective dynamics of small ensembles of Janus motors with reversible kinet-
ics under nonequilibrium conditions is carried out, and the spatial and orientational correlations of dynamic cluster states are discussed.
The conditions leading to the instability of the homogeneous motor distribution and the onset of nonequilibrium dynamical clustering are
described.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5081820

I. INTRODUCTION

Active matter comes in a variety of shapes and forms rang-
ing from fluids and gels to granular matter.1–4 The agents that give
rise to the activity are equally diverse and include living animals
and organisms with macroscopic sizes to molecular machines with
nanoscale dimensions.5 This article focuses on a specific class of
active soft matter systems, namely, fluid systems where the active
agents are synthetic motors that operate by diffusiophoretic mecha-
nisms powered by chemical energy.6–10 In contrast to most molecu-
lar machines where chemical energy is used to drive conformational
changes, the motors of interest in the present study have no moving
parts and instead exploit asymmetric chemical activity on their sur-
faces to induce motion in solution.11 While these motors typically
have sizes in the micrometer to nanometer range, they may have

different shapes, such as rods, spheres, and sphere-dimers, as well
as other more complex shapes.

Briefly, propulsion by self-diffusiophoresis arises as a result
of chemical reactions that take place on a portion of the motor
to produce local concentration gradients of reactant and product
molecules. If these species interact with the motor through inter-
molecular potentials that differ from those of the solvent in which
they reside, a net body force is produced that acts on the motor.
Since momentum is conserved, this force must be balanced by an
equal and opposite force on the surrounding fluid. This gives rise to
fluid flows that lead to propulsion.

Diffusiophoresis is not the only mechanism that can give
rise to propulsion of synthetic motors without moving parts.
Indeed, some of the first nanomotors were bimetallic rods propelled
by electrophoresis12,13 or by thermophoresis,8,14,15 a propulsion
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mechanism that has many features in common with diffusiophore-
sis. In addition, in some cases, an asymmetric chemical reaction can
produce bubbles on the surface of a motor, which provide another
type of propulsion mechanism.16

Some basic principles and conditions must be satisfied for a full
theoretical description of motor operation. At a microscopic level,
the fundamental time reversal symmetry of the dynamics must be
preserved. As a consequence, detailed balance for reactive and non-
reactive events must be satisfied. Since autonomous directed motion
is not possible in a system at equilibrium, these motors can only
operate if the system is displaced from equilibrium. Coupling of
the system to reservoirs that control the concentrations of chemi-
cal species giving rise to a nonzero chemical affinity breaks detailed
balance and leads to motor motion. Finally, micro/nanometer-sized
motors are small so that thermal fluctuations cannot be neglected,
necessitating microscopic or Langevin treatments of the dynamics
that account for such fluctuations.

While studies of single-motor dynamics offer opportunities to
probe details of the propulsion mechanisms and study scenarios
for motor control and cargo transport, the nature of the collective
dynamics of many-motor systems presents new phenomena such as
the emergence of active self-assembly into various kinds of dynam-
ical cluster states. The complex physics of motors interacting both
directly and indirectly through hydrodynamic flows and chemotaxis
also poses formidable new theoretical challenges. Key points that
need to be addressed include unraveling the relative importance of
various concentration and fluid flow coupling effects among motors
that are responsible for observed nonequilibrium system states and
the construction of theories that can describe correlations in active
nonequilibrium systems.

In this article, we consider the dynamics of individual Janus
motors as well as characteristics of their collective behavior. While
there have been other experimental and theoretical investigations of
Janus motor systems,17–30 in this study, we emphasize some fea-
tures of the descriptions of Janus motors that are often not fully
considered. In particular, both the theoretical and simulation meth-
ods employed in this study satisfy detailed balance at equilibrium,
and nonequilibrium conditions are established either by constant-
concentration reservoirs or by fluid phase reactions that, themselves,
take place out of equilibrium. This allows us to specify the affini-
ties that characterize the nonequilibrium system states for both the
single-motor and many-motor systems.

The outline of the paper is as follows: Sec. II presents an
overview of the Langevin equations for the linear and angular veloc-
ities of a single motor and the reaction rate that follows from a
fluctuating thermodynamics description of the system. The results in
this section form the basis for the analysis of the simulation results in
Sec. III. The model for the Janus motor and its environment was pre-
sented earlier.30 In the present paper, there are several main results
related to the dynamics of single Janus motors that distinguish it
from earlier study. Here, we consider systems where the reactive
species have different interactions on the catalytic and noncatalytic
hemispheres of the Janus colloid. For such general interactions, the
single-motor response to external gradients or the motor responses
to self-generated gradients in many-motor systems depend on motor
orientations. Also, force balance can lead to states where motors
show no net directed motion but pump fluid without pinning. The
response of single motors to strong external forces is shown to lead

to a nonlinear dependence of the reaction rate on the applied exter-
nal force. It is also shown that a finite-time fluctuation formula
which was derived for fixed catalytic particles31,32 can also describe
the nonequilibrium fluctuations of self-propelled Janus motors.
Finally, the collective motion of motors with reversible kinetics that
are driven into nonequilibrium states controlled by bulk phase reac-
tions is the topic of Sec. IV where simulation results are given
and discussed. The conclusion and perspectives of the study are
given in Sec. V, and Appendices A–C provide additional technical
details.

II. SELF-DIFFUSIOPHORETIC JANUS MOTORS
A. Langevin description

We begin with a short overview of the Langevin description
of the dynamics and reaction rate for a Janus colloidal motor in
solution since this formulation will be used to interpret the simu-
lation results on single-motor motion and extended in applications
to collective motor dynamics.

We consider the dynamics of a spherical Janus colloidal motor
with catalytic (C) and noncatalytic (N) hemispherical caps whose
orientation is specified by a unit vector u directed along the polar
axis from the N to C hemispheres. The motor has a radius R whose
value lies in either the micron or sub-micron range so that fluc-
tuations play a significant role in the dynamics of the motor. The
Janus colloid is immersed in a fluid containing chemically inert
solvent S and solute k = A, B species. Chemical reactions with for-
ward and reverse rate constants per unit area κ±, C + A

κ+⇌
κ−

C + B,

take place on the catalytic cap and power motor motion by a self-
diffusiophoretic mechanism. Langevin equations for the linear V
and angular 
 velocities of a Janus motor have been derived using a
fluctuating thermodynamics formulation that accounts for the fluc-
tuating concentration and velocity fields in the bulk of the solution
and fluctuating boundary conditions on the surface of the colloidal
particle.33–35 The Langevin equations are

M
dV
dt

= −γt V + Fsd + Fext + Ffl(t) , (1)

I ⋅ dΩ
dt

= −γr Ω + Tsd + Text + Tfl(t) , (2)

where M and I denote the mass and inertia tensor of the motor, the
translational friction coefficient is γt = 6πηR(1 + 2b/R)/(1 + 3b/R),
and the rotational friction coefficient is γr = 8πηR3/(1 + 3b/R). Both
of these coefficients are written for partial slip boundary conditions
for the fluid velocity field on the surface of the colloid. The slip
length b = η/λ is expressed as the ratio of the fluid viscosity η and
the coefficient of sliding friction λ. We suppose that the slip length
is uniform on the whole surface, assuming that the interaction of the
motor with the solvent molecules is uniform and dominates over
the motor interactions with the solute molecules. The Gaussian ran-
dom force and torque, Ffl and Tfl, both have zero mean and satisfy
fluctuation-dissipation relations ⟨Ffl(t) Ffl(t′)⟩ = 2kBT γt δ(t − t′) 1
and ⟨Tfl(t) Tfl(t′)⟩ = 2kBTγr δ(t − t′) 1, respectively, where 1 denotes
the unit tensor. The position r and orientation unit vector u of the
Janus motor are obtained by integrating the evolution equations
V = dr/dt and du/dt = 
 × u with respect to time.
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The terms that distinguish these Langevin equations from stan-
dard Langevin equations for inactive Brownian particles are the
diffusiophoretic force and torque contributions,

Fsd(t) =
6πηR

1 + 3b/R
N
∑
h=C

B
∑
k=A

bhk Hh(θ)∇θck(r, t)
s
, (3)

Tsd(t) =
12πηR

1 + 3b/R
N
∑
h=C

B
∑
k=A

bhk Hh(θ)r ×∇θck(r, t)
s
, (4)

where Hh(θ) is a Heaviside function that is unity on the h = C, N
hemisphere and zero otherwise, and ∇θ is the gradient in the direc-
tion tangential to the colloidal surface. These functions depend on
the surface averages, (⋅)s = (4πR2)−1 ∫S(⋅)dS, of the products of
the tangential gradients of the local concentrations of species k and
the diffusiophoretic coefficients, bhk = kBT

η (Kh(1)
k + bKh(0)

k ). The

Kh(n)
k are defined in terms of integrals over the interface of factors

that depend on the interaction potentials uhk of the solute species k
with the cap h of the colloid, Kh(n)

k ≡ ∫ dz zn [e−βu
h
k(z) − 1], where

β = 1/(kBT) and the integration is performed in the z-direction nor-
mal to the surface.8,9,36 Note that the diffusiophoretic force and
torque are independent of the fluid viscosity in view of the definition
of bk and are finite in the limits of perfect stick (b = 0) and perfect
slip (b→∞). The self-diffusiophoretic torque vanishes by symmetry
for a single Janus colloid, although an active torque with the form in
Eq. (4) can arise in the presence of external concentration gradients,
and this effect will enter when collections of active Janus particles
are considered in Sec. IV.

For micron and submicron-sized Janus motors in solution,
the Péclet number is typically small and the reaction-diffusion
equations for the concentration fields effectively decouple from
those describing the fluid flow velocity. In this low Péclet number
regime, the concentration fields that enter the Langevin equations
are the solutions of the steady-state diffusion equations, Dk∇2ck = 0,
which must be solved subject to the radiation boundary conditions,
Dk∂rck = −νkwHC on the surface of the Janus colloid at radial dis-
tance r = R. Here the reaction rate is w = κ+cA − κ−cB, νk is the
stoichiometric coefficient of species k (negative for reactants and
positive for products), and κ± are the surface reaction rate con-
stants. When the system is maintained in a nonequilibrium state
by fixing the concentrations at ck = c̄k in reservoirs far from the
motor, the dimensionless chemical affinity that characterizes the
nonequilibrium state is defined as Arxn ≡ ln(κ+c̄A/κ−c̄B).

Under low Reynolds number conditions, the inertial terms on
the left side of Eq. (1) can be neglected and the resulting over-
damped Langevin equation for the velocity of the active colloid
is

dr
dt

= 1
γt

Fext + Vsd + Vfl(t), (5)

where the self-diffusiophoretic velocity is Vsd = Vsdu = Fsd/γt with
an analogous expression for the fluctuating velocity, Vfl(t), derived
from the fluctuating force.

Since chemical reactions on the motor surface drive propul-
sion, we must also consider the Langevin equation for the reaction
rate. The mean reaction rate is the integration of w over the catalytic
surface of the Janus particle, Wrxn = ∫SC dS w = Γ(κ+c̄A − κ−c̄B),

where the last equality expresses the mean rate in terms of the
fixed concentrations in the reservoirs. The prefactor Γ depends
on the solution for the concentration fields. The net rate of
production of product molecules in a time interval [0, t],
dn/dt = dNB/dt = −dNA/dt, where Nk is the number of molecules
of species k, satisfies the stochastic equation,

dn
dt

=Wsd + Wrxn + Wfl(t) , (6)

where the random reaction rate with zero mean accounts for fluc-
tuations in the surface reaction rate and satisfies the fluctuation-
dissipation relation, ⟨Wfl(t) Wfl(t′)⟩ = 2Drxn δ(t − t′), with a reaction
diffusivity given by Drxn = (Γ/2)(κ+c̄A + κ−c̄B).

The diffusiophoretic contribution Wsd must be present for the
formulation to be consistent with microscopic reversibility. This
can be seen by introducing the chemical and mechanical affinities
Arxn = −β(µB − µA) ≈ Wrxn/Drxn to linear order together with
Amech = β Fext and writing Eqs. (5) and (6) as a set of coupled
stochastic equations for the fluxes dX

dt = J as33,34

dX
dt

= L ⋅A + Jfl = (
Dt 1 χDrxn u

χDrxn u Drxn
) ⋅A + Jfl, (7)

where X = (r, n) is a vector of the Janus motor position and num-
ber of product molecules and A = (Amech, Arxn) is a vector of the
affinities. The vector of fluctuating forces is Jfl = (Vfl, Wfl). In this
equation, we also introduced Dt = kBT/γt and the diffusiophoretic
parameter χ defined by χ = Vsd/Wrxn. The matrix L is symmet-
ric, consistent with the fact that the variables r and n are even
under time reversal. From this form, we see that the contribu-
tion Wsd is reciprocal to the diffusiophoretic term Vsd = χ Wrxn u
in Eq. (5).

To complete the description in the overdamped limit, the
Langevin equation (2) for the orientation in this limit is

du
dt

= − 1
γr

u × [Text + Tfl(t)]. (8)

These three coupled equations describe the dynamics of the Janus
motor.

B. Spherical Janus motors
For simplicity, we henceforth consider systems with equal

species diffusion coefficients, DA = DB = D. Under this condition, the
total concentration field, c = cA + cB = c0, is constant as can be seen
from the solution of the diffusion equation ∇2c = 0, with boundary
condition ∂rc = 0 at R and c = c̄A + c̄B = c0 at infinity. The solution
of the diffusion equation for cB can be written as an expansion in
Legendre polynomials as

cB = c̄B + (κ+c̄A − κ−c̄B)
R
D

∞

∑
`=0

a`f`(r)P`(cos θ), (9)

where the solutions f `(r) of the radial equation and the expansion
coefficients a` are given in Appendix B. The parameter Γ intro-
duced above that enters the mean reaction rateWrxn and the reaction
diffusivity Drxn is given explicitly by Γ = 4πR2a0.

From Eq. (3) for the diffusiophoretic force, the self-
diffusiophoretic velocity of the Janus motor for general interactions
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of the solute species with the Janus hemispheres may be written
explicitly as

Vsd = −
kBT
ηD

κ+c̄A − κ−c̄B
2(1 + 2b/R)

N
∑
h=C

Λhαh u = Vsd u, (10)

where

αh =
∞

∑
`=0

a` ∫
π

0
dθ Hh(θ) sin2 θ ∂θP`(cos θ), (11)

and the parameter Λh (h = C, N) that determines how the solute-
motor interactions affect the motor velocity is defined as Λh = Λ(1)h

+ bΛ(0)h with

Λ(n)h = Kh(n)
B − Kh(n)

A = ∫ dz zn [e−βu
h
B(z) − e−βu

h
A(z)]. (12)

If ΛC = ΛN = Λ so that the interactions of the A and B species with
the motor do not depend on the identities of the hemispherical caps,
the formula for the velocity reduces to30 Vsd = 2

3
kBT
η
(κ+ c̄A−κ− c̄B)
D(1+2b/R) Λa1u

since (αC + αN)/2 = −2a1/3. In this paper, we consider motor
dynamics for ΛC = ΛN as well as ΛC ≠ ΛN where new phenomena
arise.

The self-diffusiophoretic motion of the Janus particle is accom-
panied by fluid flow fields that form an integral part of the propul-
sion mechanism.8,29,37,38 Accounting for partial slip of the fluid
velocity field on the surface of the motor, as well as general inter-
action potentials, these fields are given by (see Appendix C) v
= vr r̂ + vθθ̂ with r̂ and θ̂ unit vectors normal and tangential to the
colloid surface, where

vr(r, θ) = Vsd(R/r)3P1(µ)

+
∞

∑
`=2

(` + 1)[(R/r)` − (R/r)`+2]χ`P`(µ), (13)

vθ(r, θ) = −
Vsd

2
(R/r)3P1

1(µ)

+
∞

∑
`=2

[(2 − `

`
)(R/r)` + (R/r)`+2]χ`P1

`(µ). (14)

In Eqs. (13) and (14), µ = cos θ, P1
`(µ) is an associated Legendre

polynomial, and χ` = − 1+2b/R
1+(2`+1)b/R

2`+1
2(`+1) ∑

∞
m=1 B`mam for ` ≥ 2 with

B`m = kBT
ηD

κ+c̄A − κ−c̄B
2(1 + 2b/R)

N
∑
h=C

Λh ∫
1

−1
dµHhP

1
`(µ)P1

m(µ). (15)

Moreover, the self-diffusiophoretic torque (4) is vanishing for this
Janus motor in a constant concentration background.

III. DYNAMICS OF SINGLE JANUS MOTORS
We now turn to coarse-grained microscopic simulations of

the dynamics of single Janus motors under nonequilibrium con-
ditions established by coupling the system to reservoirs with fixed
concentrations of chemical species as described above, as well as
through bulk fluid phase reactions operating under nonequilibrium

conditions. The equations of motion combine molecular dynam-
ics of the Janus colloid interacting with the fluid species through
intermolecular potentials and multiparticle collision dynamics39 for
the fluid particles. In contrast to the fluctuating thermodynamics
formulation in Sec. II where transport properties and boundary
conditions are specified, in the microscopic simulations, all trans-
port and other properties follow from the dynamics and are deter-
mined by the intermolecular potentials and multiparticle collision
parameters. Thus, comparisons between these two treatments of
the dynamics provide contrasting perspectives on the Janus motor
dynamics.

Specifically, we use a model that was constructed and studied
previously30 for a Janus motor made from small catalytic and non-
catalytic spheres (beads) immersed in a fluid containing inert solvent
and reactive A and B species. For this model, reversible reactions
A⇌ B, which take place on the catalytic surface, were shown to sat-
isfy microscopic reversibility. The reaction rates and Janus dynam-
ics were investigated under equilibrium and nonequilibrium condi-
tions. We use the same model here and refer the reader to Ref. 30 for
further details about the model and its implementation. The param-
eters used in this study are collected in Appendix A. In the following,
mass is expressed in units of m, length in units of σ, energies in units
of kBT, and time in units of t0 =

√
mσ2/kBT. For future reference,

the effective radius of the Janus motor in its interactions with the
solvent species is R = 5.

A. Motors without fluid phase reactions
We first present results on two aspects of the dynamics of Janus

motors that have not been considered in the earlier investigations
using this model. The simulation results described here are for sys-
tems with interaction potentials and reaction rate constants that
satisfy uCk = uNk and κ+ = κ−, respectively. Accordingly, it follows
that ΛC = ΛN = Λ. The nonequilibrium state is established by fix-
ing the concentrations in a reservoir at distance r = L far from the
Janus colloid and is controlled by the value of the chemical affinity
Arxn.

The two aspects we investigate relate to the dependence of the
reaction rate on the external force and the validity of the finite-time
fluctuation formula for Janus motors. In both instances, we inves-
tigate phenomena outside the expected domain of validity of the
theories that describe these effects.

1. Reaction rate and external force
An interesting consequence of microscopic reversibility is the

prediction that the reaction rate of diffusiophoretic motors depends
on the applied external force.33,34 An analogous dependence of
the reaction rate on the applied force is well known for biologi-
cal molecular motors40,41 but has not been studied previously for
synthetic diffusiophoretic motors. The fluctuating thermodynam-
ics treatment outlined in Sec. II is limited to the linear regime,
and particle-based simulations have confirmed its validity within
this linear regime.30 Restriction to the linear regime can be con-
trolled by adjusting the chemical and mechanical affinities, Arxn and
Amech = βFext, respectively. However, it is interesting to determine
the domain of validity of this theory and examine how the reac-
tion rate varies for higher values of the chemical and mechanical
affinities.
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To do this, as in our earlier study,30 we suppose the motor has
a magnetic moment and subject it to an external force Fext = Fextẑ, as
well as an external torque derived from a magnetic field in the same
z direction as the applied force, B = B ẑ, which controls the mean
orientation of the motor at ⟨uz⟩ = 0.998. We consider two systems
with the same chemical affinities used to construct Fig. 6 of Ref. 30,
Arxn = 0 (c̄A = c̄B = 10) and Arxn ≈ 0.1 (c̄A = 10 and c̄B = 9), but over a
much larger range of external force values, [−10, 10]. The results are
plotted in Fig 1.

The case of Arxn = 0 where the system is in chemical equi-
librium in the absence of an external force is of interest since the
diffusiophoretic constant is nonzero and finite even in the absence
of a chemical driving force. For Arxn = 0, we see in Fig. 1 that
⟨dn/dt⟩ varies linearly with the external force and that negative val-
ues of Fext correspond to ⟨dn/dt⟩ < 0 indicating that the motor
consumes product and produces fuel.30 A quadratic fit to the data
yields ⟨dn/dt⟩ = −0.0015 + 0.006Fext + 1 × 10−5F2

ext, showing that
the coefficient of the quadratic term is approximately two orders of
magnitude smaller than the linear coefficient. For even larger val-
ues of Fext, the deviations from linearity are more evident. By con-
trast, for Arxn ≈ 0.1, strong deviations from linearity are observed
with ⟨dn/dt⟩ = 1.69 + 0.0076Fext + 0.001F2

ext. In both cases, the self-
diffusiophoretic motor velocity varies linearly with external force for
both values of the chemical affinity over the entire external force
range with slope γ−1

t = 7.7 × 10−4.
This result shows that nonlinear effects manifest themselves in

the reaction rate if the external force is large enough. Such effects
can be investigated by considering higher-order corrections in the
Péclet number. They are also ruled by microreversibility, estab-
lishing relationships between the nonlinear response coefficients
and the statistical cumulants of the fluctuations in motion and
reaction.42,43

2. Time-dependent fluctuation formula
Recently it was shown that finite-time fluctuation formulas can

be derived for diffusion-influenced surface reactions on fixed cat-
alytic particles.31 These formulas, which hold for all times t, take
the form P(n, t)/P(−n, t) = exp (Atn), where P(n, t) is the prob-
ability that a net number n of product molecules are produced
in the time interval [0, t] and At is a time-dependent affinity.

FIG. 1. Average motor velocity along the polar axis u, Vz (left panel), and reaction
rate, dn/dt (right panel) vs external force with strength Fext, where the results are
from systems with (a) c̄A = c̄B = 10 (black circles) and (b) c̄A = 10 and c̄B = 9
(red squares). The fits to the data presented in the text are plotted as dashed lines.

The time dependence of At has its origin in the diffusive trans-
port to the catalytic surface in the time interval t. In the limit of
t → ∞, the time-dependent affinity converges to Arxn introduced
earlier.

Specifically, for a fixed colloidal particle, the time dependence
of the affinity is given by At = ln(W(+)

t /W(−)

t ) through the time
dependence of the reaction rates,

W(+)
t = 2πR2κ(1 −Da γJ)c̄A +

c0

4
Υ(t)
t

, (16)

W(−)

t = 2πR2κ(1 −Da γJ)c̄B +
c0

4
Υ(t)
t

, (17)

written here for D ≡ DA ,B and κ ≡ κ±, again with c0 = c̄A + c̄B.
The Damköhler number Da = 2κR/D characterizes the diffusion-
influenced surface reaction and γJ = (1 − 2a0)/Da with a0 as the
coefficient defined in Eq. (9). The time-dependent function Υ(t) is
expressed as

Υ(t) = 4π∫
L

R
dr

∞

∑
`=0

1
2` + 1

v`(r, 0)[v`(r, 0) − v`(r, t)], (18)

where v`(r, t) is the solution of ∂tv`(r, t) = D[∂2
r −`(`+1)/r2]v`(r, t)

subject to the boundary conditions (v`)L = 0 at r = L, and on motor
surface at r = R,

R(∂rv`)R = (v`)R + Da
2` + 1

2

∞

∑
m=0

(vm)R ∫
1

0
dµP`(µ)Pm(µ), (19)

with the initial condition, expressed in terms of the expansion
coefficients a` of the concentration field,

v`(r, 0) = Da R a`[(
R
r
)
`

− (R
L
)( r

L
)
`+1

]. (20)

As noted above, these results were derived for a fixed catalytic
particle and have been confirmed by Langevin and coarse-grained
microscopic simulations of the dynamics for fully catalytic and Janus
spherical colloidal particles without propulsion.32 Here, we con-
sider self-propelled Janus colloids in order to determine the extent
to which these finite-time fluctuation formulas might apply to these
motors.

To estimate the time-dependent affinity in the Janus motor
simulations, the probability distribution P(n, t) is determined and
fitted to the Gaussian probability distribution,

P(n, t) = 1√
2πσ2

t

exp [−(n − ⟨n⟩t)2

2σ2
t

], (21)

where ⟨n⟩t = Jtt and σ2
t = 2Dt t are the average number of reac-

tive events in the time interval t and the variance, respectively,
written in terms of Jt = W(+)

t − W(−)

t and the reaction diffu-
sivity, Dt = 1

2(W
(+)
t + W(−)

t ). The affinity can be estimated as
At ≈ Jt/Dt = 2⟨n⟩t/σ2

t . In Fig. 2, the simulation and the theoret-
ical results are compared and good agreement is seen. Compared
with the simulations without self-diffusiophoretic propulsion (i.e.,
with Λ = 0),32 the rate here is about 1.4% larger with propulsion
and the variance about 3.3% higher so that the affinity is roughly 2%
smaller.
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FIG. 2. Plots of time-dependent mean number of reactive events, ⟨n⟩t , the cor-
responding variance σ2

t , and the affinity, At , for Janus motors with propulsion
driven by nonequilibrium boundary concentrations c̄A = 6 and c̄A = 4 (dots)
(Vsd = 0.0003), and c̄A = 8 and c̄A = 2 (squares) (Vsd = 0.0009) with
Λ = Λ(1) + bΛ(0) = 0.122 + b 0.0255 = 0.390 with b = 10.5. The red curves are
theoretical predictions.

These results suggest that if the motor velocity is not too large
a finite-time fluctuation formula can be used to analyze the statis-
tics of the motor reactive events in nonequilibrium steady states. In
particular, since the time-dependent affinity can be obtained from
measurements of the average value and variance of the net number
of reactions that produce product in time intervals [0, t] with the sys-
tem maintained in the steady state, measurements of these quantities
might be used to characterize effectively the statistical properties of
Janus motors propelled by self-diffusiophoresis.

B. Motors with fluid phase reactions

Biological molecular machines operate in nonequilibrium envi-
ronments controlled by chemical networks that produce motor fuel
and consume motor products, often adenosine triphosphate and
adenosine diphosphate, respectively. Similarly, nonequilibrium con-
ditions for motor motion can also be established by fluid phase
reactions whose mechanisms involve motor reactant and prod-
uct species.30 These reactions or reaction networks are them-
selves driven into nonequilibrium states by fluxes of other species
whose values may be incorporated into effective rate constants.
In this way, detailed balance is broken so that directed motor
motion is possible. In the studies of collective dynamics presented
in Sec. IV, it is convenient to establish nonequilibrium condi-
tions in this way without considering details of how fuel is sup-
plied to the system at the boundaries. Consequently, we now
present information on single Janus motor motion under these

nonequilibrium conditions that will be needed later. In contrast to
our earlier study of this model,30 we also consider the full gener-
ality of the intermolecular interactions of the solute species with
the motor, allowing for different interaction potentials of these
species with the catalytic and noncatalytic caps of the motor so that
ΛC ≠ ΛN .

When the fluid phase reaction A
k2⇌
k−2

B is present, the concen-

tration fields are given by the solutions of the steady-state reaction-
diffusion equations, Dk∇2ck + νkw2 = 0, where w2 = k2cA − k−2cB
is the bulk phase reaction rate. These equations must be solved sub-
ject to the radiation boundary conditions on the surface of the Janus
colloid as described earlier and concentrations ck = c̄k far from the
colloid, which are determined by the fluid phase steady state con-
ditions. Since cA + cB = c0, the reaction-diffusion equation for cB
takes the form (D∇2 − k2 − k−2)cB + k2c0 = 0. The solution for
cB has the same structure as Eq. (9) but with c̄B = k2c0/(k2 + k−2)
and the radial function f`(r) and coefficients given by the solutions
of equations that account for the fluid phase reaction. Details are
given in Appendix B. The system is driven out of equilibrium by
the condition κ+/κ− = 1 ≠ k2/k−2 = 0.1, thus breaking the detailed
balance condition κ+/κ− = k2/k−2 that was considered in Ref. 30 so
that (κ+c̄A−κ−c̄B) > 0. The projection of the velocity along u, Vsd, is
shown (color coded) in Fig. 3 as a function of the ΛC andΛN parame-
ters. In this figure, the value of Vsd obtained from simulations (color
inside small circles) is compared to the theoretical predictions com-
puted using Eq. (10) (color outside circles) at selected points labeled
(a)–(g). A quantitative comparison at these points in the ΛC-ΛN
plane is given in Table I. Overall, the agreement is generally within
statistical errors.

The boundary that separates forward moving (Vsd > 0) from
backward moving (Vsd < 0) motors is indicated by the dashed

FIG. 3. The projection of the velocity along u, Vsd, of a single Janus motor
operating in a reactive medium for various values of ΛC and ΛN , where the cat-
alytic reaction probabilities are p± = 1 and the bulk reaction rate constants are
k2 = 5 × 10−5 and k−2 = 5 × 10−4. See Table I for details.
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TABLE I. The motor propulsion velocities obtained from simulations (S) and theory
(T) for various interaction strengths, �Hα. The bulk reaction rates are k2 = 5 × 10−5

and k−2 = 5 × 10−4.

(�CA, �CB , �NA , �NB ) (ΛC, ΛN) VS
sd × 103 VT

sd × 103

(a) (1.0, 0.5, 1.0, 0.5) (0.38, 0.38) 1.41 ± 0.05 1.4
(b) (0.5, 1.0, 0.5, 1.0) (−0.38, −0.38) −1.43 ± 0.06 −1.4

(c) (1.0, 0.5, 0.5, 1.0) (0.38, −0.38) −1.12 ± 0.04 −1.0
(d) (0.5, 1.0, 1.0, 0.5) (−0.38, 0.38) 1.11 ± 0.06 1.0

(e) (1.0, 1.0, 1.0, 0.5) (0.00, 0.38) 1.22 ± 0.06 1.2
(f) (1.0, 1.0, 0.5, 1.0) (0.00, −0.38) −1.30 ± 0.06 −1.2

(g) (1.0, 0.5, 1.0, 1.0) (0.38, 0.00) 0.16 ± 0.05 0.18
(h) (0.5, 1.0, 1.0, 1.0) (−0.38,0.00) −0.05 ± 0.06 −0.18

(O) (1.0, 1.0, 0.5, 0.5) (0.00, 0.00) 0.01 ± 0.05 0.0

line where Vsd = 0. For systems not in equilibrium, κ+c̄A ≠ κ−c̄B,
a vanishing self-diffusiophoretic velocity implies ΛN = − αC

αN
ΛC,

where αC and αN are given in Eq. (11). For the system param-
eters considered here, αC/αN ≈ +0.15. With the exception of the
origin, along this line, directed motion ceases although the dif-
fusiophoretic mechanism is still in operation. Fluid flows with
far-field dipolar character are generated as can be seen from the
expressions for the fluid velocity field in Eqs. (13) and (14) with
Vsd = 0 and their plots in Fig. 4 for two parameter values cor-
responding to points i and j (black dots) in Fig. 3. Thus, along
this line, the diffusiophoretic forces arising from the catalytic and
noncatalytic hemispheres have equal and opposite signs so that
Vsd = 0, but fluid flows are still generated in the surrounding fluid.

FIG. 4. Fluid velocity fields in the vicinity of a Janus motor, where the corresponding
Λ factors are chosen to be at points i and j on the dashed line for Vsd = 0 in Fig. 3.
The left and right sides of the figure correspond to the two different parameter
values given by points i and j in Fig. 3. The flow fields are in opposite directions for
these two points.

FIG. 5. Fluid velocity fields on the motor surface at point (a) of Fig. 3. The points are
simulation results, and the solid lines are determined from the continuum theory.

Note that the flow directions are reversed for the two parameter
values.

The theoretical radial and tangential components of the
velocity field at a position R on the surface of the motor,
vr(R, θ) and vθ(R, θ), respectively, as well as the slip velocity
vslip(R, θ) = θ̂[vθ(R, θ) − θ̂ ⋅ Vsd] = θ̂v(s)(R, θ) (solid lines), are
plotted in Fig. 5 and compared with the simulation results (points).
Note that these fields are given by Eqs. (C3) and (C4) which show
how they depend on the slip length and concentration fields at the
surface. The peaks in the vθ(R, θ) and v(s)(R, θ) plots arise from the
strong variation in the concentration fields where the catalytic and
noncatalytic faces of the Janus motor meet. The agreement is very
good indicating that the continuum model with partial slip is able
to accurately capture the forms of these fields obtained from direct
simulations.

IV. COLLECTIVE BEHAVIOR OF MANY MOTORS
Experimental and theoretical investigations of the collective

behavior of active agents are currently being pursued on many
different systems.2–4,44–46 The systems under study range from
living macroscopic organisms such as fishes and birds to micro-
scopic living entities such as bacteria, and natural or synthetic
molecular machines and self-propelled motors. Theoretical mod-
els and associated simulations that focus on essential characteris-
tics that are responsible for collective behavior in some situations
have been proposed.1,3,47,48 Depending on the circumstances, the
dynamical models may or may not include hydrodynamic cou-
pling among the active agents. Typically, in all of these studies,
the goals are to understand the origins of nonequilibrium inho-
mogeneous collective states, how their appearance depends on
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system parameters, and the forms that they take. Investigations
of collective behavior in active matter systems are important both
from a fundamental perspective since they are examples of self-
organization in active nonequilibrium systems which present chal-
lenges for theory and from a practical perspective since most
applications will involve the use of ensembles of motors rather than
single motors.

Synthetic chemically powered motors present additional fea-
tures that affect their collective behavior. Since they move by
phoretic mechanisms arising from self-generated concentration gra-
dients, the inhomogeneous concentration fields in many-motor sys-
tems produce concentration gradient fields in the environment that
can affect the motions of the motors, in addition to their self-
propulsion. Thus, in such systems, we must account for coupling
of motors to one another through chemical gradients. In addition,
phoretic propulsion is accompanied by fluid flow fields and hence
hydrodynamic coupling will also play a role in the dynamics. At
high motor volume fractions, direct motor-motor interactions also
become important. There is growing literature on theoretical and
experimental studies of these systems.18,49–57 Particle-based sim-
ulations of ensembles of hundreds of Janus motors with variable
catalytic cap sizes using a hard model and irreversible kinetics have
been studied previously.28 Simulations with irreversible chemical
reactions of the collective dynamics of small ensembles58 and very
large ensembles59 with thousands of sphere-dimer motors60,61 have
also been carried out.

In this section, we present results of particle-based simulations
of small ensembles of the Janus motors described in Sec. III. In
contrast to earlier investigations, we can study the effects of dif-
ferent intermolecular potentials for the catalytic and noncatalytic
hemispheres on the collective dynamics in a system whose dynam-
ics satisfies detailed balance and is maintained in a nonequilibrium
steady state that is controlled by out-of-equilibrium fluid phase
reactions.

A. Simulation of collective dynamics
We consider systems of NM = 20 Janus motors in a cubic box

of linear size L with periodic boundary conditions. We primarily
study dilute motor suspensions with volume fraction � = VMNM/V
= 0.05, where VM is the volume of a motor and V = L3 is the system
volume.

The forms that the collective behavior takes are first studied as
a function of the Λh parameters listed in Table I. To characterize the
collective behavior, we consider the Janus motor radial distribution
functions shown in Fig. 6. In order to minimize the effects of solvent-
exclusion forces on the clustering dynamics, the effective radius
for motor-motor interactions was chosen to be RMM = 5.5, which
corresponds to the value of r at which the radial distribution func-
tion falls rapidly to zero in Fig. 6.

In this figure, the motors with ΛN > − αC
αN
ΛC show tran-

sient clustering (upper panels), whereas no clustering is seen in
those cases with ΛN < − αC

αN
ΛC (lower-left panel). The lower-right

panel compares the radial distribution functions g(r) for the motors
with propulsion arising only from diffusiophoretic effects from
the C hemisphere [cases (h) and (g) with ΛN = 0] and forward-
moving motors [case (g), ΛC > 0] that show weak clustering. These
results indicate that the N hemisphere plays a dominant role in

FIG. 6. Radial distribution functions for the Janus motors with the Λ parameters
listed in Table I. In the simulation, the other parameters take the following values:
κ+ = κ− = 0.6, k2 = 5 × 10−5, k−2 = 5 × 10−4, nA = 9.1, nB = 0.9, a0 = 0.0065,
Γ = 4πR2a0 = 2.04, αC = −0.000993, αN = −0.006463. The upper right
panel shows an example of a dynamic cluster configuration with parameters for
case (a).

determining motor collective behavior. The average number of
neighboring motors within the first solvation shell (r < rs = 14) from
a given motor can be found from

n̄(rs) =
4πNM

V ∫
rs

0
g(r)r2dr. (22)

We find that n̄ ≈ 2 for cases (a), (d), and (e) and n̄ ≈ 1 for cases (b),
(c), and (f), indicating that forward-moving motors form clusters of
average size 3 and on average only dimers are found for backward-
moving motors. While these average cluster numbers are small, we
note that the clusters are highly dynamic, forming, and fragmenting
so that some system configurations have large clusters while oth-
ers exhibit more gas-like configurations. The clustering ability of
forward-moving motors and its lack for backward-moving motors
are consistent with results obtained earlier for hard Janus particles28

and sphere-dimers.59

To further understand the structure of motor clusters and the
effects of motor orientation, we consider the two-dimensional motor
distribution function,

ρM(r, θ) = V
N2

M
⟨ 1

2πr2 sin θ

NM

∑
i=1

NM

∑
j≠i

δ(rji − r)δ(θji − θ)⟩, (23)

where rji = |rji| with rji = rj − ri is the distance between two motors
and cos θji = ûi ⋅ rji/rji, and the angle brackets denote an average in
the steady state. The two-dimensional orientational function is given
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by

uM(r, θ) = 1
NM

⟨ 1
nM(r, θ)

NM

∑
i=1

NM

∑
j≠i

u′jδ(rji − r)δ(θji − θ)⟩, (24)

where nM(r, θ) = N−1
M ∑NM

i=1∑
NM
j≠i δ(rji − r)δ(θji − θ) is the average

number of motors at (r, θ), and the components of u′j are defined
as

u′jx = ûj ⋅
rji − rji ⋅ ûiûi
∣rji − rji ⋅ ûiûi∣

, u′jy = ûj ⋅ ûi. (25)

The results of calculations of ρM(r, θ) and uM(r, θ) are shown in
Figs. 7 and 8, for forward-moving and backward-moving motors,
respectively. For forward-moving motors, one sees that high/low
motor densities and weak/strong orientational ordering in the
vicinity of C/N hemispheres are found. These observations sug-
gest that the forward-moving motors tend to move toward each
other and reside in regions with higher product concentrations
near catalytic hemispheres. While only weak clustering is found

FIG. 7. Two dimensional motor density functions, ρM (r, θ), and motor orientation
fields, uM (r, θ), for cases (a) and (d) listed in Table I. For the orientation fields, each
arrow represents the average orientation of the motors at position (r, θ) relative to
the position and orientation of the reference motor.

FIG. 8. Two dimensional motor density functions, ρM (r, θ), and motor orientation
fields, uM (r, θ), for cases (b) and (c) listed in Table I.

for backward-moving motors, we notice that an enhanced cluster-
ing exists near the N hemisphere for Janus motors with nonuni-
form Λ parameters—different Λ values on the C and N hemispheres
[Fig. 8(c), ΛC =−ΛN > 0]. Such enhanced clustering can be explained
by the existence of stronger orientational ordering. In contrast to the
motors with uniform Λ parameters (case b, ΛC = ΛN < 0), where
no net torque can be generated when interacting with the gradients
of chemical species from other motors, motors with nonuniform
Λ parameters are able to adjust their orientation according to the
direction of the gradient fields; i.e., the hemispheres h with Λh < 0
prefer to move toward regions rich in A particles, whereas those with
Λh > 0 move away from A-rich regions. In case (c) for backward-
moving motors, the motors have a very weak tendency to form
pairs with N hemispheres facing each other. This tendency is barely
noticeable in Fig. 6 where the radial distribution functions for (b),
(c), and (f) are compared but is more evident when other quan-
tities are examined. Since reactions only occur on the C hemi-
sphere, the regions between N hemispheres have higher A concen-
tration giving rise to a gradient of A particles across the motors that
stabilizes the pair configuration. Figure 9 shows the z component of
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FIG. 9. Motor orientation fields in the first solvation shell at 11 < r < 12 (see Fig. 6)
for forward-moving (left panel) and backward-moving (right panel) motors.

uM(r, θ) within the distance 11 < r < 12 in the vicinity of the first sol-
vation shell. Indeed, the average motor orientational ordering near
the N hemisphere (θ ≈ π) is stronger for case (c) than (b). Such
an effect is not observed in simulations of forward-moving motors
since the gradient fields tend to average out when motors form
clusters.

B. Discussion
As seen in Fig. 6, the radial distribution function g(r) changes

significantly depending on the sign of the self-diffusiophoretic veloc-
ity. If Vsd > 0, the motors tend to move toward the fuel source and
cluster together at short distances from each other so that g(r) > 1 in
the range of nearest-neighbors, 11 < r < 15. By contrast, if Vsd < 0,
the motors tend to move away from the fuel source and they do not
cluster so that the radial distribution function remains close to unity
g(r) ≃ 1 for 11 < r < 15. These observations hold more generally
as can be seen in Fig. 10, which presents more data in the ΛC-ΛN
plane. The size and color code of the points reflect the degree of
clustering, and one can see that clusters tend to form in the region
Vsd > 0. Note that, in particular, orientational effects are absent for
points along the diagonal that have ΛC = ΛN , while these effects are
present for points on the anti-diagonal, ΛC = −ΛN . The simulations
show that motor-motor interactions play an important role in the
observed clustering instability.

The formation of small dynamic clusters in the present simula-
tions is consistent with observations of cluster formation of Janus
systems with hard interactions with ΛC = ΛN where the effect of
the size of the catalytic cap on cluster formation was studied.28 It
was found that Janus motors with small catalytic caps showed the
strongest tendency to form large stable clusters, while Janus motors
with hemispherical caps showed a much weaker tendency to cluster
since the magnitude of the gradients on the Janus particle surface
depends on the catalytic cap size.

Mean-field models for the collective behavior of motors pro-
pelled by phoretic mechanisms have been constructed, and analyses
of their instabilities have suggested the existence of a number of
different inhomogeneous states that depend on system parame-
ters and the interplay between the propulsion and the orientation-
dependent chemotactic response to gradients.52,55,62–64 These
effects are inherently included in our microscopic model, along with

FIG. 10. The diagram shows the degree of clustering for a selection of points in
the ΛC − ΛN plane. The scaled size and color gradation of each point indicate the
number of nearest-neighbor motors as determined from Eq. (22). Along the dotted
line, Vsd = 0 where the motor velocity vanishes. System states that show dynamic
clustering are seen for Vsd > 0.

a full description of the collective concentration fields arising from
surface and bulk chemical reactions and the hydrodynamic interac-
tions. However, we have not explored the full parameter ranges that
might give rise to more complex inhomogeneous states predicted
by the mean-field models. Further exploration for different param-
eter domains for larger systems could provide a way to assess the
accuracy of mean-field models and help elucidate further the factors
responsible for the formation of nonequilibrium inhomogeneous
states in these systems.

V. SUMMARY AND CONCLUSION
Several features of both the single-motor and collective results

presented above are worth highlighting. All results were obtained
using a particle-based dynamics that satisfies detailed balance, and
the systems were driven out of equilibrium by controlling the chem-
ical or mechanical affinities.

For single motors, we showed that the reaction rate on a Janus
motor, displaced from chemical equilibrium, has a quadratic depen-
dence on a strong external force applied to the motor. This behavior
lies outside the domain of the linear theory, and our results should
stimulate generalizations of the theory to explain this dependence.
Furthermore, since the effect on the reaction rate is stronger than
that in the linear regime, experimental investigations of external
force effects on the reaction rate should be easier to observe. We
also demonstrated that the finite-time fluctuation formula, which
was derived for stationary catalytic particles, can also be applied
to the Janus motors discussed in this paper. This result should
prompt the development of extensions of the theory to treat chem-
ically powered motors. Lastly, by considering Janus motors with
different interactions on the catalytic and noncatalytic hemispheres,
regimes where the self-diffusiophoretic contributions from the
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different hemispheres can act in the same or different directions
could be explored.

The studies of collective behavior were also carried out under
well-defined nonequilibrium steady state conditions. While only
small ensembles of motors were investigated, our results approxi-
mately determined the parameter domains under which the homo-
geneous motor state becomes unstable and leads to the formation
of small dynamic clusters. The spatial and orientational features of
these clusters were described in some detail. By considering systems
with different ΛC and ΛN values, the effects of self-diffusiophoresis
and passive diffusiophoresis due to the presence of other motors
could be studied. These results should also stimulate the develop-
ment of theories that account for all of the features present in our
coarse-grained microscopic simulations.
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APPENDIX A: SIMULATION METHOD
AND PARAMETERS

The Janus motor is made from Nm = 2681 motor beads,
each with mass m and radius σ, randomly distributed within a
sphere of radius RJ = 4 σ, and the effective radius of the motor is
R = RJ + σ = 5σ. The motor or motors and the N = NA + NB + NS
particles of types A, B, and S are in a cubic simulation box with
linear size L = 60 σ. The average densities of reactive and inert
particles are c0 = (NA + NB)/L3 = NS/L3 ≈ 10/σ3. Multiparti-
cle collision dynamics is implemented as described elsewhere65,66

with multiparticle collision time τ = 0.1 t0 with t0 =
√
mσ2/kBT;

the molecular dynamics time step is δt = 0.001 t0. Fluid phase
reactions are described by reactive multiparticle collision dynam-
ics.67 The motor-motor and motor-fluid interactions are deter-
mined by the repulsive Lennard-Jones potentials, VHH and VαH
(with H = C, N and α = A, B, S), respectively, with general
form V (r) = 4�[(σ′/r)12 − (σ′/r)6 + 1/4]H(rc − r), where σ′ is
the interaction radius and H(rc − r) is a Heaviside function with
rc = 21/6σ′. The interaction strengths and radii are �HH = 1.0
and σHH = 3σ for motor-motor interactions and �SH = 0.5 and
σαH = σ for motor-solvent interactions and others as listed in
Table I.

Using the multiparticle collision expressions65,66 for the (com-
mon) solute diffusion constants D and fluid viscosity η, one gets
D = 0.06 and η = 16.58. The kinematic viscosity is ν = η/(2c0) = 0.829,
and the Schmidt number is Sc = ν/D = 14. The Janus colloid trans-
lational and rotational diffusion coefficients are Dt = 9 × 10−4 and
Dr = 1.37 × 10−4, respectively. Partial slip conditions apply for the
Janus particle, and the slip length determined from these transport
coefficients is b ≈ 10.5. Here, we suppose that the slip length is the
same on the catalytic and noncatalytic hemispheres: b = bC = bN .
Further details are given in Ref. 30.

APPENDIX B: CONCENTRATION FIELD
The steady-state concentration field is obtained from the solu-

tion of the reaction-diffusion equation,

(∇2 − ν2)cB(r, θ) +
k2c0

D
= 0, (B1)

with the notation ν2 ≡ (k2 + k−2)/D, the boundary condition at large
distance limr→∞ cB(r, θ) = c0k2/(k2 + k−2) = c̄B, and the radiation
boundary condition on the surface of the Janus motor

D∂rcB(r, θ)∣r=R = [κ−cB(R, θ) − κ+cA(R, θ)]HC. (B2)

Expressing the solution as an expansion in Legendre polynomials,
P`(µ), as given in Eq. (9), we find that the radial function is given by

f`(r) =
√
νR

K`+ 1
2
(νR)

K`+ 1
2
(νr)

√
νr

, (B3)

where K` is a modified Bessel function. The coefficients a`
can be found from the solution of a set of linear equations,
a` = ∑m(M−1)`mEm, where

M`m = 2Q`

2` + 1
δ`m + (κ+ + κ−)

R
D ∫

1

0
dµP`(µ)Pm(µ), (B4)

with µ = cos θ, Q` = νRK`+ 3
2
(νR)/K`+ 1

2
(νR) − `, and Em

= ∫ 1
0 dµPm(µ).

In the absence of fluid phase reactions, we have ν = 0, and hence

lim
ν→0

f`(r) = (R/r)`+1 and lim
ν→0

Q` = ` + 1 , (B5)

thus recovering the results of Ref. 34.

APPENDIX C: FLUID VELOCITY FIELD
The general solution of the Stokes equation ∇p = η∇2v for an

incompressible fluid ∇ ⋅ v = 0 with vanishing velocity far from the
Janus colloid, limr→∞v = 0, can be written as38

vr(r, θ) =
∞

∑
`=1

[ ` + 1
2η(2` − 1)(

R
r
)
` χ(1)`

R`
− (` + 1)(R

r
)
`+2 χ(2)`

R`+2 ]

×P`(cos θ), (C1)

vθ(r, θ) =
∞

∑
`=1

[ 2 − `

2η`(2` − 1)(
R
r
)
` χ(1)`

R`
+ (R

r
)
`+2 χ(2)`

R`+2 ]

×P1
`(cos θ). (C2)

The coefficients χ(1,2)
` can be determined by using the boundary

conditions at R,

vr(R, θ) = Vsd ⋅ r̂, (C3)

vθ(R, θ) −Vsd ⋅ θ̂ = b(∂rvθ + ∂θvr/r − vθ/r)r=R

−kBT
ηR

∂θcB(R, θ)
N
∑
h=C

ΛhHh, (C4)
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where the tangential gradient of the concentration field is given
by

1
R
∂θcB(R, θ) = (κ+c̄A − κ−c̄B)

1
D

∞

∑
`=1

a`P1
`(cos θ). (C5)

Since Vsd ⋅ r̂ = VsdP1(cos θ), comparing Eqs. (C1) and (C3) for ` = 1
and ` ≥ 2 yields the equations

1
η
χ(1)1
R

= Vsd + 2
χ(2)1
R3 ,

1
2η(2` − 1)

χ(1)`

R`
=
χ(2)`

R`+2 , (C6)

respectively. Substituting Eq. (C6) into Eqs. (C1) and (C2), noting
that u ⋅ θ̂ = P1

1(cos θ), and replacing coefficient by χ(2)` /R`+2 = χ`

yield

vr(r, θ) = Vsd(
R
r
)P1(cos θ) +

∞

∑
`=1

(` + 1)[(R
r
)
`

− (R
r
)
`+2

]

×χ`P`(cos θ), (C7)

vθ(r, θ) = Vsd(
R
2r

)P1
1(cos θ) +

∞

∑
`=1

[(2 − `

`
)(R

r
)
`

+ (R
r
)
`+2

]

×χ`P1
`(cos θ). (C8)

Using the boundary condition in the tangential direction
[Eq. (C4)], the coefficient χ1 is found to be

χ1 =
3
4
[ Vsd

3(1 + 3b/R) −
1 + 2b/R
1 + 3b/R

∞

∑
m=1

B1 mam], (C9)

and χ` with ` ≥ 2 as given in the main text with B`m in Eq. (15). Eval-
uating the sum ∑∞m=1 B1 mam = Vsd through the comparison with
Eq. (10) so that χ1 = −Vsd/2, Eqs. (C8) and (C9) can be rewritten in
the form of Eqs. (13) and (14) for vr(r, θ) and vθ(r, θ) given in the
main text.
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