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13.1 Introduction

Synthetic micro- and nano-scale motors that are able to move autonomously
in solution using chemical energy supplied by the environment are inter-
esting not only for their potential as agents in new devices but also because
of the intriguing physics that arises in active systems operating out of equi-
librium. These motors form a subset of a much broader class of natural and
synthetic motors that use chemical reactions as a power source in order to
perform a variety of functions." Biological molecular machines use chemical
energy to carry out active transport as well as a plethora of other biochemical
functions in the cell. These molecular machines frequently utilize the
chemical energy of adenosine triphosphate to produce conformational
changes that allow them to execute directed motion. Because nanoscale
machines experience strong thermal fluctuations from their environments
they often operate while attached to biofilaments, perhaps in order to help
mitigate some of the detrimental effects of thermal noise. Well-known ex-
amples of such machines include the numerous types of kinesin that walk on
tubulin and carry out various transport tasks, and myosin motors that op-
erate while attached to actin filaments.> On larger scales microorganisms
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316 Chapter 13

also make use of chemically-powered conformational changes to swim in
solution. For many such organisms the chemical energy is used to move
flagella in a non-reciprocal cycle allowing them to swim in low Reynolds
number environments where viscous effects dominate inertial effects.’

Synthetic motors have been constructed to mimic some of this behaviour.
For example, molecular spiders made from linked nucleic acid catalysts are
able to walk on a chemically-active patterned substrate that induces con-
formational changes to produce directed motion.* Artificial flagella made
from linked colloidal magnetic particles driven by magnetic fields to execute
non-reciprocal motions have been used to move red blood cells.” The
synthetic motors we consider in this chapter have no moving parts and
rely on phoretic mechanisms that arise from a coupling of the motor to a
non-equilibrium environment to produce directed motion.® Bimetallic
nanorod motors that are propelled by self-electrophoresis were some of the
first such motors to be constructed.”® Subsequently, a considerable amount
of research, documented in reviews, has been carried out on a variety of
motors with different shapes and propelled by different mechanisms.*" ">

Here we focus on motors propelled by self-diffusiophoresis. In this
mechanism catalytic chemical reactions taking place on a portion of the
motor produce spatially inhomogeneous concentrations of reactants and
products. Because these species interact with the motor through different
intermolecular potentials, the concentration gradients give rise to a body
force on the motor which, in turn, produces flow in a fluid environment."*™*>
Various kinds of motors that operate by this mechanism have been studied.
These include, among others, spherical Janus motors comprising catalytic
and non-catalytic hemispheres,'® " sphere-dimer motors made from linked
catalytic and non-catalytic spheres,”**>* nanowire motors,”> polymer
motors”® and even oligomeric motors made from three linked spheres that
walk on a filament®’ (see Figure 13.1). In order to sharpen the focus of our
presentation further, most of our examples will deal with Janus motors but
the general principles apply to other motor geometries, although analytical
analysis is more difficult.

13.2 Propulsion by Self-diffusiophoresis

One of the simplest motor geometries is a spherical Janus motor with two
surfaces that have different chemical activity. In experimental realizations,
a Janus motor is made of a chemically-neutral spherical bead partially coated
with catalytic material. For example, silica beads partially coated with plat-
inum immersed in a solution of hydrogen peroxide fuel move autono-
mously."”**7*° Janus motors made by attaching enzymes to a portion of a
spherical particle also move autonomously when placed in a solution con-
taining substrate.’’ The motors in these two examples, and others like
them,**** derive their propulsion from the inhomogeneous distribution of
reactants and products produced in the reaction on the asymmetric catalytic
surface by the diffusiophoretic mechanism sketched above. One can see that
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Figure 13.1 (a) A Janus motor has catalytic (C, red) and noncatalytic (N, blue) caps
on the motor surface. The motor axis is defined by the unit vector, @, in
the direction from the N to the C caps, and 0 is the polar angle. Catalytic
reactions occur when fuel A particles encounter the motor C surface
and will be converted into product B particles. (b) and (c) are self-
propelled sphere-dimer®*>* and polymer nanomotors,*® where the
catalytic and noncatalytic beads are colored in red and blue, respect-
ively. (d) shows three-bead oligomeric motors that walk on a filament
(light blue beads). Motors are color coded by their orientation on the
filament: a motor colored blue/red indicates that it is oriented so that
the catalytic bead points to the right/left, where the catalytic beads in

these motors are light blue/red. The gray beads belong to the motor that
is detached from the filament.””
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many different motor reactions can be used to produce propulsion.
While the nature of the reaction mechanism on the motor surface and the
interaction potentials of the fuel and product with the Janus motor will
determine quantitative aspects of the motor dynamics, the basic propulsion
principles can be understood by considering a simple irreversible A—B
reaction on the catalytic face of the Janus motor and specific choices for the
interaction potentials.

Because the motors of interest are small, with micron or nanometer sizes,
thermal fluctuations of properties that characterize their dynamics are large
relative to their average® and theoretical descriptions necessitate the use of
a stochastic or molecular treatment of the dynamics. For large motors de-
terministic continuum models often can be used successfully to determine
average motor velocities and steady state fluid flow and concentration fields.
We shall use both coarse-grained microscopic simulation and continuum
theory to study diffusiophoretic self-propulsion.

13.2.1 Microscopic Description

The construction of a microscopic model of active systems is conceptually
straightforward. One simply specifies the form of the active particle and its
interactions with the chemical species in the surrounding fluid, as well as
the interactions among the fluid particles, and the fluxes of chemical species
that maintain the system in a non-equilibrium state. Solution of the
microscopic equations of motion for the entire system will then yield all
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desired properties of the motor dynamics. Of course, this programme may
be difficult to carry out because of the large number of particles, particularly
of solvent type, in microscale or nanoscale systems. If the motor size is on
the order of a few nanometers or less full molecular dynamics is required to
describe the dynamics of the system because this is the regime where the
molecular nature of the solvent makes itself felt most strongly.>> On some-
what larger scales coarse-grained microscopic models where the interactions
among the solvent molecules are accounted for through effective collisions
may be used. In either case, provided the simplified dynamics preserves
the basic conservation laws of mass, momentum and energy, the essential
features of the dynamics will be preserved. This microscopic approach has
the advantage that the diffusiophoretic mechanism emerges naturally from
the dynamics, and in studies of the collective behaviour of many-motor
systems all interactions through hydrodynamic flow fields and chemical
concentration fields are accounted for.

Microscopic models of motors can be constructed in various ways.
A collection of spherical catalytic and non-catalytic beads can be used as
building blocks to make a roughly spherical Janus motor with catalytic and
non-catalytic caps.*® The fluid particles interact with the beads through soft
intermolecular potentials that may depend on the bead and solvent species
type. Chemical activity is also easily determined by the nature of the bead.
This modeling scheme is not restricted to Janus motors and the sphere-
dimer and oligomeric motors discussed above are made by linking beads
with different catalytic properties. Microscopic simulations of motors pro-
pelled by thermophoretic mechanisms have also been carried out and have
features in common with motors that operate by diffusiophoretic
mechanisms.*”™°

An even simpler Janus model is to suppose that the particle is a solid
object that interacts with the fluid through hard bounce-back collisions.”*
While both the bead-aggregate and solid models have been used to study
motor dynamics, below we shall present results for the solid model so it will
be described in more detail. Specifically, the Janus motors are treated as
solid spherical objects with a catalytic cap surface that is characterized by
the angle 0. defined from the north pole, indicated by the orientation vector
4, to the interface between the catalytic C and non-catalytic N surfaces (see
Figure 13.1(a)). Fluid particles at a distance r from the center of mass of
Janus motor experience a hard sphere interaction potential:

W, (r) = { O(i’ :;II;: (13.1)
where R, is the collision radius for a particle of type « =A, B. The radius R of
the Janus motor is chosen to be the larger of the two radii. Whenever a
particle finds itself at a distance from the center of the motor that is less
than the corresponding radius of its type, it will experience a modified
bounce-back collision.>" In each collision, a fluid particle exchanges both



Active Particles Propelled by Chemical Reactions 319

linear and angular momentum with the Janus motor. The collision rules
conserve the total energy as well as the total linear and angular momenta of
the system.

Reactive events are easily described within this microscopic model and
reactive collisions that correspond to different reaction mechanisms that
satisfy the conservation laws can be constructed.*® For example a simple
irreversible A — B reaction catalysed by the motor can be implemented using
reactive collisions that change the identity of fuel A to product B species with
probability p, whenever an A particle encounters (i.e. comes within a dis-
tance R of) the catalytic surface with a polar angle 0 <0..

To extend the accessible time scales that can be probed in simulations, a
coarse-grained model can be implemented in which the explicit interactions
among fluid particles are accounted for through multiparticle collision dy-
namics, which is described in detail elsewhere.’®™** The solvent multi-
particle collisions are carried out at discrete collisions times and alter the
particle velocities in a manner that is consistent with constants of motion so
that mass, momentum and energy are conserved. On long distance and time
scales the equations of continuum hydrodynamics can be derived from this
microscopic dynamics.***!

The final element in the microscopic model is the prescription for
maintaining the system in a non-equilibrium state. This can be accom-
plished either by fixing the flux of reagents to pre-determined values at the
boundaries of the system or by reactions in fluid phase that themselves take
place under non-equilibrium conditions. In this latter case the reactive
version of multiparticle collision dynamics may be used.** To establish a
non-equilibrium steady state in a system where the reaction A— B occurs on
the motor, it is sufficient to have reaction B—A in the fluid phase that
destroy product and supply fuel.

13.2.2 Continuum Description

Usually propulsion by phoretic mechanisms is described by adopting a
continuum perspective where the solute concentration and fluid velocity
fields are governed by the diffusion and Stokes equations, respectively,
subject to suitable boundary conditions for these fields. As noted earlier,
self-propulsion is a non-equilibrium phenomenon and the system must be
maintained in a non-equilibrium state for directed motion to occur. Here we
suppose that a non-equilibrium steady state is established by including bulk-

. koot . .
phase reactions B —2 A" while catalytic reactions, C+A— C+ B, on the
motor surface generate species concentration gradient fields in the vicinity

The rate constants in the bulk phase reaction are assumed to contain the constant concen-
trations of other reservoir species that maintain the system out of equilibrium and allow one to
control the values of k,. This overall reaction may itself be the result of a more complex
mechanism.
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of the motor. The steady-state concentration of B species, cz(r,0), can then be
determined from the solution of the reaction-diffusion equations:

DV ?cg(r,0) — kyc5(r,0) =0, (13.2)
subject to the radiation boundary condition on the motor surface:
_kDRarCB(r,H)lrzR:k()CA(R,H)@(Hc), (133)

and lim,_, ,.c4 =c, far from the Janus motor. Here D is the common dif-
fusion constant of fuel A and product B particles, k, is the intrinsic rate
constant, k, = 4nDR is the Smoluchowski diffusion-controlled rate constant,
co=c4 + cp is the total constant bulk concentration of the reactive species,
which we assume to hold locally, and ®(0) is a characteristic function that
is unity on the catalytic cap (0<0<0.) and zero on the non-catalytic cap
(0c<0<m). In view of the axial symmetry of the Janus motor and the fact that
the concentration of B particles vanishes far from the motor, the steady-state
solutions for the concentration field of B particles can be written as

(7, 0) =0 S acfi(r)Pi(1), (13.9)
(=0

where P,(u) is a Legendre polynomial with u = cos 0. After substitution of eqn
(13.4) into eqn (13.2) and (13.3) the unknown functions f(r) and coefficients
a, can be determined. The function f(r) is given by

(13.5)

where k/(kr) are the modified spherical Bessel functions of the second kind
and we have introduced the inverse screening length k= /k,/D. This
function is defined such that f,(r=R)=1 and fi(r= 00) = 0. The coefficients
can be found from the solution of a set of linear equations:

a="Y  (M")yEn, (13.6)
where "o
2Qy ko Jl ko Jll
Mim= — 8 +— | duPy(t)Pm(p), Em=-—| duPm(p), 13.7
=21t T ) IP(1) P (1) ), 1P (12) (13.7)

with ue=cos0¢ and Q, = xRk 1(kR)/ki(kR) — .

In a similar manner, the fluid velocity fields can be obtained by solving the
Stokes equation, Vp =#yV?v, where p is the pressure field and v is the fluid
velocity field, for an incompressible fluid V -v=0 subject to the boundary
condition, v(R,0) =V, +v*¥), where V,, is the propulsion speed of the motor,
v¥) is the slip velocity at the outer edge of the boundary layer, defined below,
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and v(r= o0)=0 far from the motor. The components of the velocity field

v=V,F + vyl are given by*’
+2 ¢
R R
(;) - (;) ] LePe(w), (13.8)

(t-2) (B)Z—K(R) [] P (). (13.9)

00

v (r, 1) =V <§) Py(p)+ Y L(+1)

1=2

Vi (R\® -
n(ro )=~ (£) Pl + <) (X
(=2

where Pj(u) is the associated Legendre polynomial of order 1 and the co-
efficients y, are related to the a, given in eqn (13.6) by .= kzTAco/(2nR)ay,
where the explicit expression for the factor A is given in the next section.

These results for the continuum theory of the concentration and velocity
fields can be compared with those obtained from microscopic simulations,
and such a comparison will be presented below. Finally we note that an
analogous set of calculations has been carried out for sphere-dimer motors
using a bispherical coordinate system.*®

13.2.3 Motor Propulsion Velocity

In the diffusiophoretic mechanism the body force on the motor due to the
concentration gradients produced by the reaction at the catalytic cap on
the motor gives rise to a velocity field in the surrounding fluid. The value of
this velocity field at a distance r=R at the outer edge of the boundary layer
surrounding the particle where the interaction potentials of A and B particles
with the Janus motor vanish is the slip velocity v)(R,0). The axisymmetric
slip velocity is given by

T
vO(R,0) = — %chB(R, 0), (13.10)

where 0 is the polar angle in a spherical polar coordinate system, Vy is the
gradient in the direction tangential to the motor surface, k3T is the thermal
energy, and 7 is the fluid viscosity. The effects of interactions with fluid
particles of type « =A,B are accounted for by the factor, A, defined as

A— xdr r[e—WB(r)/kBT _ e—WA(rVkETL (13.11)

where W,(r) is the interaction potential between an o-type fluid particle and
the motor. For the hard potential given in eqn (13.1), A = (R; — R3)/2.

Once the slip velocity is known, the propulsion speed of the spherical Janus
motor in the direction of its symmetry axis can be expressed ag™>'**7~*°

V== (G-v9)s, (13.12)

where (---)¢ = (4nR?) ™" deS denotes the average over the motor surface at
the outer edge of the boundary layer. Using eqn (13.4) for the concentration
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field cz of B particles in the equation of slip velocity, the propulsion speed of
a hard sphere Janus motor is given by

Vi=-"-2Aay = -—— 2 (R> - R%)a,. (13.13)
n

13.3 Dynamics of a Single Motor in Solution

It is interesting to compare the analytical results for the concentration and
fluid flow fields obtained from the deterministic continuum model with
microscopic simulations. For the sake of brevity we restrict our consider-
ations to A >0 so that the motor self-propulsion is in the + direction. The
structures of these fields depend sensitively on the size of the catalytic cap,
and the changes in the fields with cap size will be described.

Figure 13.2 compares the continuum theory and microscopic simulation?
results for the steady-state product concentration field, cx(r), for three dif-
ferent catalytic cap sizes corresponding to 0-=30°, 90° and 150°. As an-
ticipated, cp attains its maximum value on the catalytic surface and
decreases in both the radial and tangential directions. The location of the
maximum in the tangential concentration gradient field, Vcz, on the motor
surface varies with the size of the catalytic cap. This induces changes in the
slip velocity which, in turn, significantly changes the flow fields in the sur-
rounding fluid. We see from the figure that the concentration fields ob-
tained from the solution of the reaction-diffusion equation agree quite well
with the microscopic simulation results, although there are noticeable
differences.

The microscopic simulation results for the variations of the near-field
fluid velocity in the vicinity of the Janus motor as a function of 0. are shown
in Figure 13.3. For a Janus motor with a small catalytic cap (8o=30°), the
interface between the catalytic C and non-catalytic N portions of the Janus
motor lies near the head of the sphere, termed the north pole, with a dir-
ection given by the polar axis vector . Because Vc; is large at the interface,
a strong velocity field is induced in this region that moves fluid particles
from the front of the motor to the lateral directions; the weaker solvent flow
field at the south pole is also incoming to the motor surface. The flows are in
the opposite directions when the cap size is large (0o = 150°); the interface is
close to the south pole of the motor producing a flow field that takes fluid
particles from the lateral directions to the non-catalytic surface, whereas an
outgoing flow at the north pole is induced by motor motion. For the Janus
motor with 6-=90°, the flow fields in the front and rear of the Janus motor
are largely determined by the motion of the motor-producing flows away
from the motor in the region directly ahead of the motor whereas a more

The interaction radii for the hard sphere interactions are R, = 2.5 and Ry =2.45 and the systems
are maintained in a non-equilibrium steady state by using an irreversible bulk reaction B—A
with rate constant k, = 0.001. Simulation details can be found in ref. 21 and 50.
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Figure 13.2 Product concentration field, cz(r,0), for Janus motors with catalytic cap
size of 0= 30° (left), 90° (middle) and 150° (right). Panels (a), (c) and (e)
are obtained from the expressions in eqn (13.8) and (13.9), whereas (b),
(d) and (f) are the results obtained from simulations using the hard
sphere model.>® The catalytic and the noncatalytic hemispheres are
labeled in red and blue, respectively.
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Figure 13.3 The induced flow field (v) normalized by the propulsion speed (V) for
three different sizes of the catalytic surface: 6. =30° (left), 90° (middle)
and 150° (right). Panels (a), (c) and (e) are obtained from the ex-
pressions in eqn (13.8) and (13.9), whereas (b), (d) and (f) are the
results obtained from simulations using the hard sphere model.>® The
catalytic and the noncatalytic hemispheres are labeled in red and blue,
respectively.

complicated fluid circulation pattern is observed at the lateral direction of
the motor.

Examination of the figure shows that while the continuum theory captures
the gross structural features of these flow fields there are significant quan-
titative differences between the continuum theory flow fields and those
observed in the microscopic simulations. These deviations are probably due
to the microscopic details of the dynamics within the boundary layer that are
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not captured by the boundary conditions utilized to solve the continuum
equations for the flow and concentration fields.

A similar comparison has been carried out for sphere dimer motors.*® For
sphere dimers, where the catalytic activity is confined to the entire surface of
the catalytic sphere, the analogue of the variable cap size in a Janus motor is
a difference in the size of the catalytic sphere in the dimer relative to that of
the non-catalytic sphere.

13.4 Dynamics of Systems with Many Motors

When the system contains many active particles, interactions among them
from a number of different sources can give rise to collective behaviour that
is different from suspensions of inactive particles.®*"%?7:3%,32734:48,51770 pyep
in the absence of any attractive interactions active particles can undergo
motility-induced phase separation where the active particles segregate into
domains of high and low density.”> Simple active Brownian models can
capture the dynamics of this process. The Langevin equations of motion of
the spherical active particles are given by

dR;
T w(FY + F;) + (13.14)
da
€ =f; x 0, (13.15)

where R; and 4, are the position and orientation of active particle i, and
w=1/{ is the mobility for friction coefficient {. In the active Brownian model,
the self-propulsion force is a constant FY={(V,{,, and the short-range
repulsive force between particles is given by F; = Z F;, where F;= —F;; is
J#i

the force between motors i and j. The system is subject to thermal fluctu-
ations described by f! and f}, which satisfy fluctuation-dissipation relations,
(FIOFH(¢))) = 2Do6,115(¢ — ¢') and (F(OE{(¢')) = 2D5o,15(t — t'), where Dy = kgT/{
and Dy = (27) " are the translational and rotational diffusion coefficients
with the rotational relaxation time 1.

The clustering mechanism can be understood in terms of fluxes at the
interface between the low and dense phases. A flux that brings particles into
a dense region in the system is proportional to the motor propulsion speed
V., whereas the outgoing flux is determined by the timescale 7 for rotational
diffusion to alter the direction of an active particle moving toward the dense
phase. Clustering occurs when the incoming flux is greater than the out-
going flux, i.e. a larger motor speed and slower rotational diffusion gives rise
to a greater tendency to aggregate. The relative importance of these two ef-
fects is characterized by the Péclet number Pe = |V,| tx/R, where R is the
particle radius. Another factor that affects phase behaviour is the concen-
tration of motors typically expressed as an area or volume fraction ¢.
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Numerical and analytical studies of active Brownian systems have found
different phases that can be characterized in a phase diagram in the Pe-¢
plane.>*>**%71"7% Neither hydrodynamic nor concentration-mediated inter-
actions that are important for chemically-powered motors are taken into
account in the active Brownian model.

In the overdamped limit where inertia is unimportant a force applied at a
given point in the fluid immediately gives rise to a velocity field at distant
points in the fluid leading to fluid-mediated hydrodynamic forces that
couple the motion of solutes that are not interacting directly. In systems of
self-propelled motors the entire system is force-free, and this fact imposes
conditions on the forms that these hydrodynamic interactions take. The
induced flow from motor j modifies the velocity of motor i and adds an
additional term to eqn (13.14) of the form Zvj(Ri; R;, 4;) where v{(R; R;, )

J#i

is the velocity field at the position of motor i produced by motor j at position
R; with orientation i;, and a similar treatment can be applied to the angular
velocity.””””” Such hydrodynamic couplings among active swimmers has
been studied.>*"”®® ‘puller’ swimmers induce an incoming fluid flow
along the swimming axis bringing other swimmers together along this dir-
ection, and outgoing flows in the lateral directions give rise to an effective
repulsion in the perpendicular directions. For ‘pusher’ swimmers, the
hydrodynamic flows are reversed (see Figure 13.4).

Stochastic models that neglect hydrodynamic interactions but include
concentration-mediated interactions can be described by the dynamical
equations,

dR,
d_tt = b Vep(R) + w(F +F) +f! (13.16)

du; . .

ditl = —bg(l - lll'll,') . VCB(RI') + flr' X U, (13.17)
where cp(R,) is the local concentration of product particles around motor i
produced by other active particles, and the magnitudes of the response of a

RN A
- T

Figure 13.4 The sketch of fluid flows induced by (a) a puller swimmer, (b) a neutral
swimmer and (c) a pusher swimmer, where the stream lines indicate
flow fields and the arrow at the center of a swimmer shows swimming
direction.
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motor to the concentration field gradient are given by the parameters b ,
which are proportional to the interaction factor A. The parameter b, deter-
mines the effective interactions between active particles; a concentration-
mediated interaction is attractive if b; >0 (chemotactic attraction) and is
repulsive if b; <0 (chemotactic repulsion). The parameter b, determines the
orientational ordering of motors along (b,>0) and against (b, <0) the gra-
dient in the concentration of product particles. Numerical simulations of
such systems have been performed and several different phases have been
observed, including gas-like phases, dynamic cluster states and other time-
dependent and collapsed cluster states,®”°%8%8°

13.4.1 Microscopic Description of Active Particle Collective
Motion

Unlike continuum theories that rely on various approximations to describe
the collective behaviour of active systems, microscopic models naturally
account for direct intermolecular interactions, many-body concentration
gradients, fluid flows and thermal fluctuations. We now describe some of
the results of microscopic simulations of the collective motion of diffusio-
phoretic motors. In particular, we shall discuss the interplay between
chemotactic and hydrodynamic interactions and how these two effects in-
fluence motor collective dynamics.

Microscopic descriptions of the collective dynamics of motors propelled
by diffusiophoretic mechanisms have been carried out for sphere-dimer
motors,®>’? as well as three-bead oligomeric motors moving on filaments in
solution.>” The non-spherical shapes of sphere-dimer motors, along with
coupling interactions arising through chemical and hydrodynamic effects
give rise to cluster states whose structural and dynamic properties depend
on all of these factors. The confinement of oligomeric motors to filaments
leads to distinctive correlations among the motors that depend strongly on
chemical gradients. The collective behaviour of dimer motors propelled by
thermophoresis has been studied and flattened swarms of motors have been
shown to arise from a combination of phoretic repulsion and hydrodynamic
lateral attraction.’® We now describe some aspects of the collective be-
haviour of hard spherical Janus motors that interact with one another
through repulsive Lennard-Jones interactions V;,(r)=4¢[(a/r)"* — (o/r)° +
1/4]1©(r, —r), where O(r. — r) is a Heaviside function and the cut-off distance
r.=2Y%6. We take e=1 and o =6.

The propulsion arising from the diffusiophoretic mechanism is accom-
panied by concentration gradient and slip velocity fields at the motor surface
that determine the coupling of the motor to the surrounding fluid. As already
discussed in Section 13.3, these two fields change significantly with the size
of the catalytic cap on the spherical Janus motor. Depending on the char-
acteristics of the induced flow fields, chemotactic and hydrodynamic inter-
actions can work either cooperatively or against one another to enhance or
suppress dynamical clustering.’® In the simulations described below, while
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Figure 13.5 Radial distribution functions, g(r), for the systems of Janus motors with
various sizes of catalytic cap with 0,=30° and 90° at volume fractions
¢ =0.052 (red circles), 0.1 (blue squares) and 0.26 (green triangles). The
black arrows indicate the changes of g(r) as ¢ increases.

the chemotactic interaction is chosen to be always attractive,’ hydrodynamic
interactions can be attractive or repulsive depending on the characteristics of
the induced flow fields and motor spatial configurations. Going from small to
large cap sizes, the Janus motor may be classified in terms of the near-field
flows (see Figure 13.3) as a puller swimmer for small caps (0= 30°), a neutral
swimmer for intermediate-size caps (0o=90°) and a pusher swimmer for
large size caps (0o=150°). Depending on the size of the catalytic cap the
hydrodynamic interactions may enhance or reduce chemotactic attraction for
small (6,=30°) or large cap sizes (6= 90°), respectively.

The clustering behaviour that arises from these interactions can be de-
scribed quantitatively by the radial distribution function, g(r), for different
types of Janus motors in systems with motor volume fractions ¢ =0.052, 0.1
and 0.26," as shown in Figure 13.5. The enhanced clustering for Janus mo-
tors with small catalytic caps is evident from the comparison of the radial
distribution functions of motors with 0, =30° and 90°. Going from small to
large volume fractions, it is clear to see that while only weak clustering is
seen in the system of Janus motors with 0-=90°, strongly enhanced clus-
tering is observed for Janus motors with 0,=30° at the positions of the
nearest (r~o¢) and next-nearest (r~20¢) neighbours, where ¢ =6 is the dis-
tance in the repulsive Lennard-Jones potential.

Additional information concerning the effects of hydrodynamic flows on
the Janus motor dynamics can be obtained from an examination of the
motor velocity fields, as shown in Figure 13.6. Focusing on a specific motor,

Ssimulations were performed using the hard sphere model for the Janus motors. The interaction
radii are chosen to be R, =2.5 and Rz =2.35 so that A= (Rﬁ 7R12;)/2 >0, indicating an effective
attraction toward high product concentration regions. Simulation details can be found in ref. 21
and 50.

The volume fraction of Janus motors is ¢ = (NV,)/V, where V, :émr3 is the effective volume of a
Janus motor, V=60° is the system volume, and N= 100, 200 and 500 is the total number of
Janus motors in the system.
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Figure 13.6 Motor velocity fields, Vy(r, 0), at volume fraction ¢ =0.1 for catalytic
cap sizes 0c=30° and 90° normalized by the average motor propulsion
speed, V,(¢)=0.0078 and 0.014, respectively. The region in front of the
motor, where chemotactic interactions are the strongest, is highlighted
by red dashed rectangle.

one can see that while there are incoming motor flows toward the rear of the
motor for both types of Janus motor, the dynamical behaviour of neigh-
bouring motors in front of the motor differs substantially when the cap size
changes. The red-dashed rectangles highlight the nearest and the next
nearest regions in front of the motor. One can see that the average motor
flow velocity points inward toward the surface of the motor for small cap
sizes, while for large cap sizes the motor flow velocities are outgoing from
the motor surface.

13.4.2 Microscopic Dynamics with Chemical Coupling
Removed

In order to gauge the relative importance of chemotactic and hydrodynamic
interactions one must be able to selectively turn off these interactions in
simulations while not disturbing the diffusiophoretic mechanism of self-
propulsion for single motors that involves both local concentration
gradients and coupling to fluid flow. This can be achieved by considering a
collection of Janus motors in which each motor 7, instead of common
product particles, produces a distinct product B; that interacts with motor i
as a product particle but as a non-reactive A particle with all other motors j.
In this way only the self-generated concentration gradient of B; is responsible
for the propulsion of that motor. In this model the concentration-mediated
chemotactic attraction is turned off while hydrodynamic interactions be-
tween Janus motors resulting from self-propulsion remain.*’

As a consequence of the absence of chemotactic interactions, starting
from an initial cluster configuration displayed in Figure 13.7, the cluster
gradually breaks apart and the system reaches a steady state in which the
Janus motors are homogeneously distributed beyond the first solvation
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Figure 13.7 Starting from a cluster configuration of Janus motors with small cap
sizes (left figure), when chemotactic interactions are turned off the
cluster breaks apart to form a homogeneous distribution of Janus
motors (right figure).

without CI
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Figure 13.8 The radial distribution function, g(r), and motor velocity fields, V,,, for
the Janus motor with catalytic cap size 0o=30° in the absence of
chemotactic interactions. In the left panel, g(r) for the system with
chemotactic interactions is plotted for comparison.

shell. The disappearance of clustering in the absence of concentration-
mediated interactions is reflected in the lack of structure in the radial dis-
tribution function, and in the changes in structure of the motor velocity
fields (see Figure 13.8). The changes observed in the radial distribution
function indicate that turning off chemotactic interactions has a significant
impact on the motor velocity fields at short distances but a weaker influence
at long distances. These results show that long-ranged interactions are
mediated by hydrodynamic interactions, which bring Janus motors toward
each other, while the short-range interactions are primarily due to chemo-
tactic effects.””

13.5 Dynamics of Motors in Crowded Media

While the motion of a chemically-powered motor in a simple fluid environ-
ment has been studied often, this is not the case for more complex solutions;
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for example, those containing suspended colloidal particles. Here we survey
some of the new features that arise for motor motion in such environments.

First, we consider a system comprising a single Janus motor with cata-
lytic and non-catalytic hemispheres (6;=90°) immersed in a fluid con-
taining N, passive spherical particles. The Janus motor and passive
particles are taken to be hard solid objects that interact with each other
through the repulsive Lennard-Jones potentials introduced earlier in the
discussion of Janus motor collective behaviour. We again take e=1 and
o =6 so that the effective volume of a motor or passive particle is V, = ina”.
For a system with volume V=60 containing a single motor and N, =599
passive particles in the fluid medium, the volume fraction of suspended
particles is ¢ =(NV,)/V~0.3, where N=N, + 1. Further simulation details
can be found in ref. 87.

The influence of motor activity on the properties of inert solutes can be
seen by comparing the structures of the radial distributions of passive par-
ticles and fuel particles in the vicinity of chemically-active (A>0 with
R,=2.5 and Rz =24) and chemically-inactive (A = 0 with R, = Rz =2.5) Janus
motors. The radial distribution function of passive particles around the
active and inactive Janus motor is given by

g(r)= ﬁ<zé(rﬁ—r)>, (13.18)

where r;; is the distance between the centre of the Janus motor and passive
particle 7, and (- - -) denotes the steady-state time and ensemble average over
trajectories. Figure 13.9(a) compares the radial distribution g(r) around two

10—
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Figure 13.9 (a) The radial distribution function, g(r), between the Janus motor and
the surrounding obstacles and (b) the average density of the fuel A
particles as a function of distance from the center of the motor. The
black solid curves in (a) and (b) are for active Janus motor (with
propulsion), whereas the red dashed curves are for passive Janus
motor (without propulsion).
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types of Janus motor. One can see that the positions of the peaks for active
Janus motor lie at shorter separations, indicating a more packed structural
ordering of the surrounding passive particles induced by motor self-
propulsion.

As a result of this packing of the passive particles around the Janus motor,
the density of chemical species varies in the radial direction from the Janus
motor. The steady-state density of fuel particles around the Janus motor is
given by:

Na(2)
na(r) = 4;2 <Z (i — r)>, (13.19)

where N4(¢) is the instantaneous number of fuel particles in the system, and
1;; is the separation between the Janus motor position and fuel particle 7.
As can be seen in Figure 13.9(b), fuel particles are depleted at the mean
positions of passive particles at r=~6. As expected, the spherically-averaged
fuel density in the vicinity of an inactive Janus motor is higher than that for
an active particle because no chemical reaction occurs on its surface.

Second, we reverse the situation and consider systems with a single pas-
sive particle in an active medium of N; Janus motors. The Janus motors and
passive particle are the same as above but we consider both forward-moving
(A>0) and backward-moving (A <0) motors. As discussed above, the col-
lective behaviour of forward-moving and backward-moving Janus motors is
different; for example transient clusters arising from concentration-
mediated interactions are observed in a collection of forward-moving mo-
tors, while in a system of backward-moving motors no significant directional
and orientational ordering exists.>’ Consequently, one may expect that a
passive particle will behave differently when immersed in these two types of
active media.

The volume fraction dependence of the diffusion coefficient of the passive
particle determined from the long-time behaviour of the mean square
displacement is given in Table 13.1. This table compares the diffusion
coefficients D" and D” of the passive particle in media with active with
forward-moving and backward-moving Janus motors, respectively, with D’ in
a medium with inactive Janus motors. While D’ decreases as ¢ increases in

Table 13.1 Dependence of the passive particle diffusion coefficient on the volume
fraction in a medium with inactive Janus motors (D) and media with
active with forward-moving (D) and backward-moving (D”) Janus

motors.
0.05 0.1 0.16 0.21 0.26 0.3
’(d)) 0.0030 0.0029 0.0026 0.0024 0.0021 0.0018

) 0.0045 0.0054 0.0064 0.0056 0.0071 0.0068
() 0.0040 0.0052 0.0052 0.0050 0.0056 0.0052
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Figure 13.10 Velocity correlation, Cy(r), between the single passive tracer particle
and the surrounding forward-moving (black circles) or backward-
moving (red squares) Janus motors with volume fraction (a) ¢ =0.05
and (b) ¢ =0.3.

the inactive Janus medium, a strong enhancement of the diffusion co-
efficient at high volume fractions is found in media with forward-moving
Janus motors, and a less significant enhancement is found in media with
backward-moving motors.

The origin of the activity dependence of the passive particle diffusion
coefficient can be understood by considering the correlation between the
velocity of the passive particle and active motors, as expressed in the cor-
relation function Cy(r) defined as

Cov(r) = —— <§: (V- vi)d(ri — r)>, (13.20)

i=1

where Vy=vq/|vy| and v;=v,/|v;| are the unit vectors determined by the
velocities of the passive particle and active particle i, respectively, and

Ny
n(r)= <Z o(re — r)> is the average number of passive particle-motor pairs
i=1
with separation ry; = |rr—r;| at r. Figure 13.10 shows this correlation func-
tion in (a) dilute and (b) dense media with forward-moving (black circles)
and backward-moving (red squares) motors. While no significant correlation
at any distance r is found in dilute systems, for forward-moving motors
positive correlations in the passive particle and motor velocities are observed
at both short (r~5) and intermediate (5<r<7.5) separations. In contrast,
Cyy(r) decreases at small separations for the system with backward-moving
motors. Recall that transient clusters were observed for forward-moving
Janus motors, whereas no significant cluster formation was seen backward-
moving motors.*! The positive velocity correlation seen in Figure 13.10(b) for
forward-moving Janus motors suggests that the passive particle is encapsu-
lated by and moves collectively with surrounding Janus motors in dense
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active media. By this entrainment mechanism, the mobility of a passive
particle in a crowded environment can be significantly enhanced.

13.6 Conclusion

Synthetic self-propelled motors come in all shapes and sizes and can be
tailored to perform specific tasks. These features have stimulated the in-
creasing research effort that is devoted to their construction and the ex-
ploration of their potential applications, in particular at the nanoscale.
Theory and simulation play an important role in this research because they
can be used to elucidate the mechanisms by which these motors operate and
provide predictions for their properties. This field of research also presents
challenges for theory, especially for very small motors for which continuum
theory may not be applicable.

Motors that are powered by chemical energy and operate by phoretic
mechanisms pose special challenges. The collective behaviour that such sys-
tems display is governed by an interplay of direct intermolecular forces,
hydrodynamic interactions and interactions determined by chemical gradi-
ents that operate on both short and long distance and time scales. It is difficult
to incorporate all of these features into simple many-body phenomenological
models. Microscopic simulation methods that treat the multi-component fluid
in which the motors move on a particle-based level can account for all of these
interactions. The results presented in this chapter should serve to show how
coarse-grained microscopic models can be constructed and used to explore
various aspects of the dynamics of motors propelled by self-diffusiophoresis.
Through a combination of experiment, theory and simulation one can explore
the new phenomena that arise in these active particle systems.
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