Can you solve this?

Professor Doug Stephan sent us the following problem:

Question:

The compounds \(\text{P}_5\text{Ph}_5 \) is an oligophosphine that binds in a bidentate fashion to \(\text{Rh} \). The \(^{31}\text{P} \) spectrum (see aside) is shown. Can you rationalize the observation of inequivalent \(\text{P} \) atoms?

Answer:

The \(^{31}\text{P} \{^1\text{H} \} \) NMR spectrum is a remarkably well resolved, yet complex pattern exhibiting five sets of resonances ranging from 55 to -15 ppm (Fig. 1), consistent with the presence of five distinct \(\text{P} \) environments. NMR spectral data revealed the couplings of each of the \(\text{P} \) atoms to other \(\text{P} \) nuclei as well as \(\text{Rh} \) with coupling constants ranging from 2–365 Hz. The extracted coupling constants were employed to simulate the first-order ABCDEX \(^{31}\text{P} \{^1\text{H} \} \) NMR spectrum. This is consistent with The \(\text{P}_5 \)-ring is bound to \(\text{Rh} \) in a 1,3 fashion with two of the five \(\text{P} \) nuclei are above the \(\text{Rh} \) coordination plane while only one \(\text{P} \) atom is below. The inequivalence of the two sides of the coordination plane a result from the orientation of the Ph rings on the \(\text{P} \) atoms. Of the two \(\text{P} \) atoms above the coordination plane, \(\text{P}(5) \) has a Ph ring oriented toward the \(\text{Rh} \), while the Ph ring on \(\text{P}(4) \) is oriented away.